
	 Adult cells are believed to maintain their differentiated status 
under stable homeostatic conditions, while cellular identity can be-
come plastic when homeostasis is perturbed such as during an injury 
and inflammation [1]. Indeed, it is now evident that cell identity is 
more flexible and plastic than previously thought. In particular, recent 
studies have shown that it is possible to influence cell fate through 
artificial manipulation such as exogenous expression of a set of Tran-
scription Factors (TFs) that results in the reprogramming of adult 
skin fibroblasts to a pluripotent state [2]. In addition, recent reports 
have demonstrated that one type of differentiated somatic cell can be 
directly reprogrammed to another type of cell, without rejuvenation 
to a pluripotent state, in a process called transdifferentiation [3,4]. 
Transdifferentiation is an epigenetic acquisition by a cell of a given 
type of the properties and features of another cell type, loosing its own 
phenotype [5].

	 Adult brain has very limited regeneration capability, thus, the 
possibility of a direct neuronal reprogramming from non-neuronal 
cells, by passing a pluripotent state,would induce the formation of 
precious neuronal cells. This direct cellular generation thus represents 
a potential remedy for neuronal loss caused by brain injuries or neu-
rodegeneration. In addition, the direct conversion of patient-specific 
cells could be used to implement disease-relevant in vitro platforms 
to generate models for neurodegenerative diseases, identify targets, 
and screen potential therapeutic drugs. Indeed, hundreds of millions 
of people worldwide are affected by neurological disorders, making 
them one of the greatest threats to public health.

	 This Commentary discusses current knowledge on direct repro-
gramming towards neuronal cell identity, and more specifically,  
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recent advances in trasdifferentiation mediated by the exclusive use of 
chemical cocktails, remarking advantages and limits. To our opinion, 
direct reprogramming approaches represent an innovative strategy 
to overcome major barrier of the in accessibility of human brain to 
obtain human neurons for studies of pathological mechanisms of dis-
eases. Moreover, directly converted induced neurons (iNCs) from hu-
man donor-derived fibroblasts possess important features of cellular 
aging, including global transcriptomic changes, nuclear pore defects, 
and DNA methylation, rendering them a valuable tool for the study of 
age-related neurological diseases [3,6-8].

	 Among the various strategies to obtain direct reprogramming, ec-
topic expression of TFs in non-neuronal cells has generated neurons 
and neural progenitors both in vitro and in vivo [9-17]. Direct conver-
sion by TFs stands on their ability to bind to in accessible neuronal 
genes in differentiated non‐neuronal cell types which are generally 
called as pioneer TFs.

	 The first direct conversion strategy was achieved by the over 
expression of the three TFs, namely Ascl1, Brn2, and Myt1l (BAM 
factors), in mouse fibroblasts  [18], and was the nextended to BAM 
with NeuroD1 to convert human fibroblasts to iNs with a simila ref-
ficacy [19]. Recently, it has been suggested that a huge variety of TF 
combinations can be applied to generate subtype‐specific iNs from 
fibroblasts and TF screening studies for iNs conversion have led to the 
identification of additional pro‐neuronal factors, suchas Brn3a/b/c, 
Brn4s, and Ezh2 [20,21].

	 More interestingly, TFs and endogenous genes vital to the trans-
differentiation process can be specifically targeted and silenced or 
upregulated, using methods that focus on the direct manipulation of 
DNA or the epigenetic environment, such as CRISPR/Cas9 [22,23].

	 Moreover, the ability to drive direct reprogramming is not limited 
to TFs, as non-coding RNAs can promote it as well. In addition, the 
culture conditions, including increased time in culture and developing 
coculture with astrocytes, may have an impact in terms of both pheno-
typic fate and efficiency of reprogramming.

	 The use of viral vectors to introduce exogenous transgenes into 
cells is currently the most prominent method to induce transdifferen-
tiation. Generally, lentiviruses and retroviruses are mostly used due 
to their ability to effectively integrate directly into the genome of the 
host cell and confer a proper level of TF expression. However, viral 
delivery of TFs possesses undesirable side effects, including possible 
mutations leading to oncogenesis, thus posing problems for possible 
clinical trial application. That is the reason why non-integrating vec-
tors have been developed, although associated with lower efficiencies 
of transdifferentiation, including: Sendai virus, plasmid vectors, mini-
circles, and mRNA vectors which remain in the cytoplasm where they 
are translated into proteins. Alternative non-viral methods, such as 
transient transfection and electroporation, can be also applied, howev-
er, due to their low efficiency, transgene silencing, inflammation and 
poor nuclear uptake, are less commonly used in transdifferentiation 
studies [24]. Lately, the use of Protein Transduction Domains (PTDs)  
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fused to TFs allows the direct delivery of exogenous TFs avoiding the 
problems associated with DNA integration into the hostgenome [25].

	 Besides TFs, small molecules, modulating specific targets and epi-
genetic mechanisms, have been used to produce neural progenitors 
[26] and neurons [27-29] in in vitro cultures.

	 Small molecules can be applied in combination with viral 
agent-mediated TF delivery to improve the reprogramming efficiency 
[30-35] although, chemical reprogramming alone can be easily ad-
ministrated and converted into therapeutic intervention. In the last 
years, several groups have identified combinations of small molecules 
capable of transdifferentiating somatic cells such as fibroblasts, astro-
cytes and even glioblastoma cells into neurons [26-29,32,36].

	 Small molecules can convert human astrocytes or fibroblasts into 
functional neurons, with a yield of up to 85% neurons from fetal and 
adult astrocytes [28,29], which is lower from human fibroblasts, with 
an efficiency of no more than 15% [27]. For sure, fibroblasts are better 
starting cells for direct neuronal reprogramming because of easier ac-
cess for acquisition than astrocytes, although their lower reprogram-
ming efficiency to neurons needs to be increased for broader applica-
tion in neurological diseases. For example, Yang et al., [37] reported 
that human fibroblasts can be efficiently and directly reprogrammed 
into glutamatergic neurons by serially exposing cells to a combination 
of twelve small molecules. The sec iNs displayed neuronal transcrip-
tional networks, and also exhibited mature firing patterns and formed 
functional synapses.

	 Although many reports have demonstrate dthat small molecules 
can convert one type of terminally differentiated somatic cell to an-
other fully differentiated cell type, there are still various major aspects 
ahead that must be overcome. Indeed, protocols using small mole-
cules produce mainly glutamatergic subtypes with rare gabaergic and 
dopaminergic neurons. The inability to produce the neuronal subtypes 
which are lost in neurodegenerative disorders like Parkinson’s Dis-
ease, Alzheimer’s Disease, Amyotrophic Lateral Sclerosis, Hunting-
don’s Disease represents a major limitation in current small molecules 
transdifferentiation field. However, it was showed that a single TF 
such as ASCL1, using a novel protein intracellular delivery technolo-
gy, in combination with the small molecules LDN193189, SB431542, 
DAPT and valproic acid can rapidly reprogram astrocytes into mature 
GABAergic and glutamatergic interneurons with high efficiency [25]. 
Moreover, Chabrat et al., developed a novel in vitro model of dopa-
minergic-like neurons derived from human nasal olfactory stem cells 
through a six step transdifferentiation protocol based on a specific 
combination of signaling pathway modulators [38].

	 Thus, it is reasonable to envisage that slight modifications of the 
chemical recipe may yield additional neuronal lineages optimizing 
and harnessing the small molecule-mediated reprogramming ap-
proach, leading to remarkable advances in disease modeling and pos-
sibly regenerative medicine in the future.

	 The main disadvantages of transdifferentiation by chemical ap-
proach to generate brain cells with specific properties consist in a low 
efficiency, a mixed population of neurons with different degrees of 
maturity and a unique subtype of neurons, although capable to main-
tain the age-related fetaures associated with the human pathology. 
Forced expression of exogenous TFs for the direct reprogramming 
is supposed to damage proper epigenetic marks and genome integri-
ty, where as chemical compound-based conversion should be milder,  

leading to a better conservation of the ageing conditions. Thus, we 
believe that the chemical strategy may represent a new valid meth-
od for generating cells for both basic research and clinical applica-
tions. It is important to consider that the rapid metabolic transition 
that takes place during the fate switch from somatic cell to neuron 
puts enormous stress on the cell, leading to the formation of Reactive 
Oxygen Species (ROS), known to induce toxicity and affect cell fate 
regulation, representing a major barrier to transdifferentiation [39]. 
For this reason an intermediate stage of reprogramming would reduce 
this oxidative stress, promoting a safer transition between cell fates 
and improving efficiency [16]. In this respect, the generation of neural 
stem or progenitor cells (NPCs) from other somatic cells, can largely 
improve the efficiency of the protocol since each neural stem cell can 
produce several neurons.

	 Small molecules can also facilitate the approach of Cell Activation 
and Signaling-Directed (CASD) reprogramming, which leads cells 
into an epigenetically activated transition state (cellactivation) that, 
in conjunction with lineage-specific signals (signaling-directed), re-
programs somatic cells into NPCs [40-44]. In this respect, Zhu et al., 
demonstrated that a single gene, Oct4, in conjunction with a chemical 
cocktail containing CHIR99021, A-83-01, NaB, LPA, rolipram, and 
SP600125 was sufficient to convert human fibroblasts into expand-
able NPCs [45].

	 The most exciting perspective of direct reprogramming is the pos-
sibility that it might be achievable in patients in vivo. Performing in 
vivo transdifferentiation would eliminate the need for cell transplan-
tation and immunosuppression depending on the target application. 
However, potential adverse effects of direct reprogramming in vivo 
could include in appropriate differentiation into other cell types or 
even tumor cells. In addition, induced cells could be dysfunctional 
and detrimental to the brain structure.

	 In animal models, transdifferentiation in vivo is now currently fea-
sible, revealing the importan trole of resident glial cells in the gener-
ation of specfic neurons to restore lost neuronal circuitries. For exam-
ple, reactive astrocytes and NG2 cells can be directly reprogrammed 
into functional neurons inside mouse brains with the expression of 
a single neural TF, NEUROD1 [14]. Other TFs, such as neurogenin 
2 (NGN2), ASCL1, and SOX2, have also been reported to reprogram 
glial cells into neurons both in vitro and in vivo [46].

	 Unfortunately, so far, studies have failed to induce chemical trans-
differentiation in vivo accomplished only with small molecules result-
ing efficient just in promoting an increase in adult brain neurogenesis 
[47].

	 In conclusion, over the past years, several strategies for direct 
cellular reprogramming have been developed to generate brain cells 
with age‐preserved features rendering them a valuable tool for many 
applications such as aged brain modeling and age‐related diseases.

	 Although direct transdifferentiation methods, due to the low effi-
ciency, are quit elimited, there is ongoing research that aims at impro-
ving this limit specially with the advent of in situ transdifferentiation, 
and with the emergence of CRISPR/Cas9 system as an alternative to 
TF overexpression methods. In addition, although some disadvanta-
ges need to be overcome, transdifferentiation by chemical reprogram-
ming remains an important tool not only in vitro for disease modeling, 
new biomarkers discovery and drug screening, but also for possible 
application in regenerative medicine.
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