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Introduction
	 Last twenty years, several anticancer therapies have been devel-
oped and multiple treatment strategies against tumor cells have been 
suggested in order serious malignancies to be faced. Indeed, accord-
ing to recent epidemiological data in past decade the cancer death rate 
seems to be declined [1]. Nevertheless, multiple molecular “escape” 
mechanisms against therapies have been demonstrated with a partic-
ular reference to inhibition of apoptosis’ pathways, induction of drug 
detoxification proteins, alteration of nucleic acid damage repair sys-
tem and activation of several survival mechanisms [2]. Among these 
survival signals that contribute in treatment-resistance is the phe-
nomenon of “cancer stemness” [2,3]. Generally, the term “stemness” 
has been defined as the ability of Embryonal (ESCs) or Pluripotent 
Somatic Cells (PSCs) to self-renew perpetuating their lineage and to 
interact with their microenvironment giving the rise to differentiated 
cells. Moreover, an appropriate stimuli i.e., epigenetic event is able to 
induce vice versa the reprogramming of progenies to dedifferentiated 
status, the “stem-cell” status [4]. 

	 However, when somatic cells and normal somatic Stem Cells 
(SCs), or even precancerous adult cells exploit their pluripoten-
cy to sustain survival advantage even into toxic microenvironment 
without maintaining tissue homeostasis, the progeny clones can be 
transformed into resistant Cancer Stem Cells (CSCs) with aggressive 
molecular characteristics [4,5]. Specifically, mainly four crucial traits 
differentiate the phenomenon of “stemness” from “cancer stemness” 
[4]; abnormal activation of self-renewal pathways such as Notch, 
Hedgehog, PTEN, TGF-β or Wnt, short cell cycles with attenuated 
DNA repair mechanisms, induced cell plasticity (i.e., epithelial-mes-
enchymal transition) and conversion of cell metabolic status from ox-
idative and energy-producer phenotype to glycolytic and biosynthetic 
phenotype or vice versa [6,7]. 

	 The latter phenomenon regarding metabolic remodeling in cancer 
was first described by Otto Warburg in 1920s [8,9]. This observation 
is known as Warburg effect and was defined as the preference of can-
cer cells to perform aerobic glycolysis rather than Oxidative Phos-
phorylation (OXPHOS) even in normoxic conditions, increasing their 
biosynthetic properties but with detriment to ATP production [10-12]. 
Recent studies have shown that ESCs and CSCs respond rapidly in  
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Abstract
	 The discovery of novel targets in cancer cells along with the rap-
id development of innovative therapeutic agents against them and 
especially in last decade has led to better cancer survival rate. How-
ever, the existence of Cancer Stem Cells (CSCs) into the tumor col-
onies has been suggested as a crucial impediment in cancer fight. 
Not only the self-renewal and high proliferative ability of CSCs but 
also the diversity of their metabolic signatures amplifies the tumor 
heterogeneity and treatment-resistance, defining a new hallmark of 
oncogenesis called metabostemness phenomenon. This phenom-
enon concludes several patterns of metabolic behaviour which rely 
on three basic phenotypes; (i) Aerobic glycolysis or Warburg effect; 
(ii) Reverse Warburg effect and (iii) Oxidative Phosphorylation (OX-
PHOS) phenotype. Pyruvate Kinase M2 (PKM2) has been consid-
ered as the key regulator enzyme of metabolic reprogramming of 
CSCs as alternates itself between a dimer state, responsible for aer-
obic glycolysis and a tetramer state, responsible for OXPHOS pro-
cedure. Several PKM2 interactions which perceive the changes of a 
usually oxidative microenvironment of CSCs attribute to a metabolic 

plasticity and as a result to survival, proliferation, metastasis and 
drug-resistance. Henceforth, this review highlights the evidence re-
garding CSCs about these PKM2-mediated interactions describing 
the outcome of them in terms of metabolic reprogramming and of 
maintenance of redox equilibrium. Thereafter, a recapitulation of 
molecular targeting of PKM2 and metabostemness will be attempt-
ed so as to be given prominence to the development of innovative 
metabolic targets and therapies against the triangle “PKM2 - meta-
bolic plasticity - oxidative scale” in CSCs. 
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their high anabolic needs via aerobic glycolysis activating biosynthet-
ic pathways like Pentose Phosphate Pathway (PPP) and in turn sustain 
their self-renewal ability and pluripotency [7,13,14]. However, the 
hyper-energetic activity of SCs induces the production of Reactive 
Oxygen and Nitrogen Species (ROS and RNS) increasing the intra-
cellular oxidative load. Epigenetic interactions between glycolytic 
pathways and antioxidant defense pathways such as Hypoxia-Induc-
ible Factor 1-alpha (HIF1α), Nuclear Factor κappa B (NFκB) and nu-
clear factor (erythroid-derived 2)-like-2 (Nrf2) have been described 
in CSCs as a survival hijacking that lead in retrieval of intracellular 
redox balance [15-18]. 

	 In this review, we firstly describe the metabolic plasticity of CSCs 
recapitulating the interfering molecular pathways and in the second 
step we focus on Pyruvate Hinase Isoform M2 (PKM2) which is the 
key regulator of aerobic glycolysis shedding light on its redox met-
abolic regulatory action. In this way we highlight crucial molecular 
players that may be exploited in future innovative therapeutic strate-
gies.

Metabolic Plasticity in CSCs: The Metabostemness 
Phenomenon
	 Since 1970s, especially after the elucidation of impact of Warburg 
effect on carcinogenesis, metabolic modifications in cancer cells had 
been considered as a novel hallmark in cancer and had been mainly 
pertained to the increased uptake of glucose from cancer cells along 
with induced anabolic glycolytic processes [9]. However, to explain 
the tumor aggressiveness and heterogeneity several studies addition-
ally investigated the CSC model of carcinogenesis where a distinct 
highly tumorigenic population of SCs would have an asymmentric di-
vision to birth identical SCs but in parallel to produce more differenti-
ated progenies [19,20]. This stemness phenomenon in cancer in com-
bination with the distinct metabolic phenotypes of CSCs even into the 
same SC niche or tumor colony configured a new hallmark concept 
called metabostemness. Reversely, the metabostemness theory reflect 
the metabolic plasticity in different types of CSCs and of cancer cells 
with their metabolic status ranged from dormant to aggressive, from 
hyperoxic or normoxic to hypoxic and from oxidative to glycolyt-
ic [21]. Indeed, different oxygenation levels or other stimuli such as 
inflammatory signals, irradiation, malnutrition or treatment-induced 
stress can activate or inactivate certain metabolic epigenetic signa-
tures or even more reprogram specific cancer metabotypes in favour 
or not of CSC-like phenotype [19]. 

	 CSC model of carcinogenesis firstly identified in acute myeloid 
leukaemia, when Lapidot et al., and Bonnet et al., discovered that 
a CD34+/CD38- cell population developed in a hierarchical manner 
into immunodeficient mice [22,23]. Since then, a cataract of studies 
revealed in general terms that mainly three metabolic and bioenerget-
ic phenotypes can be recognized in CSCs and can be altered even into 
the same tumor population serving in complexity and heterogeneity 
of cancer; (i) Warburg effect or Glycolytic phenotype, (ii) Reversed 
Warburg phenotype, and (iii) OXPHOS phenotype [24]. 

	 For instance, a metabolic switch in favor of anabolic pathways 
such as PPP and against OXPHOS has been detected in in vitro and 
in vivo experiments in brain CSCs, in glioma cells and in human 
glioblastoma tissues [25]. In particular, these cells exploit the bio-
synthetic advantage of Warburg effect and acquire high proliferating 
dynamic. For this reason, elevated telomerase expression and long  

leukocyte telomere length have been revealed in gliomagenesis and 
glioma cells [26]. Similarly, CD44+/CD24-/EPCAM+ breast stem-
like cells maintain their stemness via increased glucose uptake and 
aerobic glycolysis [27]. 

	 However, the “seed and soil” theory states that an appropriate 
tumor microenvironment is a prerequisite for a tumor SC niche de-
velopment and proliferation. Based on this theory, the reverse War-
burg phenotype has been described. In this phenotype CSCs interact 
with each-other and with cancer-associated fibroblasts (CAFs) in a 
way that lactate, pyruvate, amino acids and ketone bodies derived 
from CAFs to perform mitochondrial respiration are catabolised 
and on the other hand the anabolic products from CAFs via aerobic 
glycolysis are elicited [28,29]. Indeed, it is well-reported that CAFs 
can facilitate the reprogramming of cancer cells into CSCs and en-
hance the CSCs’ resistance via excretion of pro-stemness chemokines 
and cytokines i.e., NF-κB, IL6, IL8, prostaglandins [30]. However, 
monocarboxylate transporters (MCTs) seem to have a central role in 
terms of CSCs-CAFs metabolic symbiosis as glycolytic CAFs export 
lactate via MCT4 and oxidative cancer cells or CSCs import lactate 
via MCT1 [31]. For instance, in triple negative breast cancer tissues 
high expression of Monocarboxylate Transporter (MCT4) biomarker 
of aerobic glycolysis has been detected only in stromal cells, a fact 
that is validated in radiation-resistant breast CSCs where increase of 
mitochondrial population and OXPHOS prominence were detected in 
contrast to neighbouring breast differentiated progeny cells [32,33]. 
Similarly, in glioblastoma cells only periastrocytes are responsible 
for cAMP-CREB-PGC1α pathway activation inducing mitochondrial 
respiration and differentiation of glioblastoma cells [34]. 

	 Regarding OXPHOS phenotype, it has been demonstrated that 
somatic SCs can present this metabolic behaviour to acquire high en-
ergy despite high levels of ROS are concurrently produced. When 
SCs enhance their pluripotency and their self-renewal, the risk of ox-
idative damage rises and either a reverse Warburg effect neutralize 
the oxidative load or a metabolic switch to glycolytic phenotype is 
performed [35]. This metabolic plasticity has been demonstrated in 
Lgr5+ intestinal SC niche baring the OXPHOS phenotype of Lgr5+ 
SCs and the glycolytic phenotype of Paneth cells [36]. Another par-
adigm is glioblastoma CSCs that mainly exploit the OXPHOS to 
enhance their energy needs. To be more specific, in in vitro glioblas-
toma CSCs, Insulin Growth Factor 2 Binding Protein 2 (IGF2BP2) 
was overexpressed leading to regulation of mitochondrial respiratory 
chain complex and to OXPHOS metabolic phenotype. Importantly, 
knock-down of IGF2BP2 not only affected OXPHOS rate but also 
reduced glioblastoma “stemness” and tumorigenity [37]. Moreover, 
leukemic cells mainly appear OXPHOS phenotype with increase of 
intracellular oxidative load but with parallel increase of antioxidant 
genes’ expression [38]. Indeed, tigecycline, an antibiotic targeting 
mitochondrial gene expression presents an inhibiting activity against 
chronic myeloid leukemic CSCs ‘proliferation inducing chemothera-
py sensitivity [39].

	 Several studies have already recognised multiple metabolic regu-
lators that can induce the switch from the one metabolic phenotype 
to another. NANOG, Oct4, SOX-2, KLF-4 transcription factors along 
with cMYC multivalent protein (OSKM-N complex) can induce the 
pluripotency of SCs and their conversion to CSCs, a fact that leads in 
higher oxidative status [6,40-42]. However, the mitochondrial inhi-
bition, mitophagy and mitochondrial fission via KLF-4, SOX-2 and  
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cMYC transcriptional activity promote the Warburg effect and the 
protection of CSCs from hyper-oxidative stress [7,43]. Additionally, 
overexpression of cMYC has been correlated with high PKM2/PKM1 
status on CSCs indicating SCs reprogramming into glycolytic phase 
and concurrently facilitating their survival expansion [44]. Except for 
transcriptional factors, several oncogenes, tumor suppressor genes 
and membrane proteins have been studied for their role in metabol-
ic plasticity. For instance, CAIX transmembrane protein can induce 
EMT phenotype and stemness via Notch and Jagged pathways in 
breast CSCs and CD44v membrane glycoprotein indirectly facilitates 
GSH synthesis reducing accumulating ROS a fact that in turn induce 
glycolysis but not anabolic PPP. Interestingly, MYC low/CD44 high 
CSC phenotype has been shown as a dormant metabolic phenotype, a 
result which has been confirmed by the observation that a component 
of ubiquitin ligase, known as FBW7, resulting in proteasome - depen-
dent degradation of cMYC facilitate the quiescent status [45]. More-
over, in hepatocellular carcinoma loss of p62 has been associated with 
lower glucose uptake, lower glutamine metabolism and decreased 
PPP [14]. However, the abundance of the metabolic regulators and the 
complex interactions between them reflect the need for more studies 
to decipher the metabolic reprogramming of CSCs.

PKM2: The Central Enzyme in CSCs’ Glycolysis 
	 PKM2 is a glycolytic enzyme involved in the final but pace-mak-
ing step of glycolysis and is expressed in adult SCs, in CSCs and in 
cancer cells. In particular this enzyme catalyses the transfer of phos-
phate from phosphoenolpyruvate (PEP) to Adenosine 5’ - Dihosphate 
(ADP) so that pyruvate and Adenosine 5’ - Triphosphate (ATP) are 
synthesized. In mammals, four isoforms of Pyruvate Kinase (PK) 
have been described; PKL, PKR, PKM1, and PKM2 [46]. Howev-
er, in SCs and in carcinogenesis, the expression of PKM2 becomes 
gradually dominant over PKL/ R/ M1 expression [47]. Notably, it 
remains unclear whether PKM1 undergoes conversion in PKM2 in 
cancer cells and in CSCs or if the alternative splicing of PKM gene is 
alternated during tumorigenesis. 

	 It has been already demonstrated that PKM2 undergoes an al-
losteric regulation that refers to switch between a tetrameric and a 
dimeric state (R/T state). Particularly, on the one hand the tetram-
eric PKM2 has high catalytic activity and is involved in catabolic 
processes leading to ATP synthesis, whereas the dimeric PKM2 has 
been characterised by its low catalytic activity with inductive action 
on cell glycolytic pathways (i.e., PPP) [46,48]. Several studies have 
shown that tumor cells activate the dimeric state of PKM2 to achieve 
anabolic demands of oncogenesis. Fructose-1,6-biphosphate controls 
as an allosteric activator the switch of PKM2 from dimer to tetramer 
form. Nevertheless, the presence of intermediate anabolic metabo-
lites such as serine and Succinyl-Amino-Imidazole Carboxamide-Ri-
bose-5′-phosphate (SAICAR) function as negative feedback for syn-
thetic dimer PKM2 inducing its tetramerization [48-51]. In contrast, 
PKM2 acetylation (i.e., 305 Lys), PKM2 OGlcNacylation and PKM2 
phosphorylation (i.e., Y105) can be stimulated by high glucose and 
amino acids (i.e., alanine, phenylalanine) concentrations and by 
hypoxic conditions resulting in inhibition of enzymatic activity of 
PKM2 and stabilisation of PKM2 dimer state [10,51,52]. Moreover 
the acetylation of PKM2 facilitates the interaction between PKM2 
and autophagy charepones leading PKM2 to lyposomic degradation 
[53]. Notably, in carcinogenesis dimer PKM2 has also been char-
acterised as a non-metabolic transcriptional co-activator enhancing 

glycolytic phenotype and protecting CSCs from high oxidative load 
and hostile microenvironment [11,54-56]. For instance, PKM2 tran-
scriptionally regulates the expression of CCND1, cMYC, GLUT1 
and LDHA proteins via activation of Wnt/ β-catenin pathway. In this 
way, PKM2 seems to orchestrate tumor cell proliferation, glucose up-
take and aerobic glycolysis. Despite the transcriptional role of PKM2, 
several cross-talks between PKM2 and oncogenic pathways (i.e ste-
roid sulfatase, NF-κB) can induce angiogenesis, EMT and metastasis 
[10,57].

	 Importantly, the role of PKM2 in oncogenesis and in stemness has 
been investigated for various CSCs types. PKM2 expression enhanc-
es prostate CSCs’ proliferation in experiments with DU145 prostate 
CSCs and this is in agreement with the higher levels of PKM2 ex-
pression in Gleason 8-10 score prostate tissues in contrast to Glea-
son 6-7 score tissues. In addition, PKM2 expression was enhanced 
in Pancreatic Ductal Adenocarcinoma (PDAC) tissues and cell lines 
and more importantly on PKM2 silencing the percentage of PDAC 
cells that entered into G0/G1 phase was impressively elevated. The 
latter indicates a crucial intervening role of PKM2 in cell cycle and 
renewal effect. However PKM2 affects cell cycle not only via the 
regulation of cyclin-dependent kinase, but also via alteration of CSC 
phenotype. Indeed, in in vitro experiments on A549 - derived CSCs 
the knockdown of PKM2 resulted on reduction of CD44 marker and 
on elimination of cells’ capacity to form spheroids. In concordance, in 
a study derived from our group, in ovarian cancer tissues, PKM2low/
CD44low patients had better prognosis compared to PKM2high/ 
CD44high patients [58]. Another activity of PKM2, as also described 
previously, is its interaction with Oct4 protein regulating CSCs’ death 
and differentiation. Experiments both in P19 embryonic carcinoma 
cell extraction and in glioma SCs proved through PKM2 silencing 
techniques that PKM2 is involved on CSCs spheroid differentiation 
via binding to POU domain of Oct-4. Moreover, studies in liver CSCs 
have focused on mi-RNAs (miRs) revealed that miR-675 in coopera-
tion with PKM2 leads to formation of the appropriate activator com-
plex that binds to cMYC promoter so as to induce its transcription. 
Similarly, liver CSCs proliferation can be enhanced by miR-122 that 
importantly attenuates PKM2 expression. Ηοwever, the limpid net of 
PKM2 interactions that promotes glycolytic phenotype in CSCs and 
induces stemness has not been yet fully clear.

PKM2: A Central Regulator of CSCs’ Redox Equi-
librium 
	 Stress is experienced by cells when pro-oxidant and electrophilic 
reactive species (i.e., ROS and RNS) overwhelm the cell’s antioxi-
dant and detoxification proteins. In addition to causing protein and 
lipid damage, stress products can cause mutations and epigenetic 
perturbation by damaging DNA and proteins that modify chromatin.
Ischemia, hypoxia or hyperoxia, heat, radiation and toxins could be 
some of the exogenous stress factors that disrupt intracellular redox 
equilibrium [59]. However, depending on endogenous stress factors, 
several types of stress have been proposed including apoptotic, oxida-
tive, metabolic, mitotic, proteostatic and hypoxic stress. Cancer cells 
and especially CSCs that exhibit self-renewal and rapid proliferative 
properties appear disturbance of redox balance with ROS and RNS to 
be continuously increased. For this reason, cancer cells and CSCs sec-
ondarily activate survival or/and antiapoptotic pathways to hijack hy-
per-stress conditions. In particular, oxidative free radicals can induce 
calcium/calmodulin pathway releasing calcium from intracellular 
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deposits and finally activating kinases (i.e., Protein Kinase C (PKC)) 
that promote cell survival, cytoskeleton remodelling and cell motility 
[60]. ERK1/2 and PI3K/Akt pathways assume to be activated after in-
creasing of oxidative load as well as several antioxidant transcription 
factors or proteins. 

	 Notwithstanding, metabolic plasticity of CSCs and the switch to 
glycolytic phenotype mediated by PKM2 have been proposed as cru-
cial events for the maintenance of redox equilibrium. Even more, Mo-
vahed et al., suggest that the deal of cancer cells to overcome oxida-
tive stress acquiring Warburg effect phenotype may be the crucial step 
of conversion from cancer cells to CSCs [14]. Indeed, studies with 
hepatocellular carcinoma cells in oxidative stress revealed that PKM2 
converts into dimer state and enter into mitochondria where interact 
with apoptotic Bcl2. The PKM2-mediated phosphorylation of Bcl2 
inhibits the proteasomal-degradation of Bcl-2 leading to anti-apop-
totic signalling and cancer cell survival [61]. In gastric carcinoma, 
PKM2 seems to enhance “cancer stemness” via stabilisation of p65 
subunit of NFκΒ. In this way, NFκB interact with and in turn activate 
Bcl-xL antiapoptotic protein promoting gastric cancer development 
[62]. 

	 Multiple experiments in breast, prostate, bladder and brain cancer 
cells demonstrate that hypoxic stress can activate HIF-1α transcrip-
tion factor mediating the transcriptions of glycolytic enzymes such 
as PKM2 and glucose transporters, GLUT1 and CAIX [14,25,63,64]. 
Strict regulation of HIF-1α has been demonstrated as in low ROS 
levels HIF-1α is activated and in turn induces glycolysis, whereas in 
high ROS levels it is attenuated and thus, PKM2 dimer state and PPP 
pathway are induced [14]. 

	 All the above observations reflect the ability of oxidative free 
radicals to act as mediators on PKM2 allosteric conversion and sub-
sequently on metabolic reprogramming on CSCs. However, the mo-
lecular mechanisms, with which PKM2 maintain CSCs redox equilib-
rium, is still under investigation. It is well - known that dimer state of 
PKM2 has low catalytic power and as a result there is great accumula-
tion of upstream products of glycolysis pathway that in turn enter into 
anabolic pathways. So, glucose-6-phosphate is leaded to PPP pathway 
where it turns into ribose-5-phosphate. During these reactions Glu-
cose-6-Phosphate Deydrogenase (G6PD) is the determining enzyme 
that uses NADP+ as a cofactor which in turn neutralise free radicals 
via NADPH formation. In other words, PKM2 dimer state can recov-
er redox equilibrium increasing NADPH/NADP ratio [65]. Another 
mechanism of PKM2-driven ROS reduction is the Mitochondrial 
Membrane Potential (MMP). In bone marrow mesenchymal SCs’ ex-
periments, PKM2 inhibitor (C3k) resulted in increase of MMP and a 
reduction of oxidative stress was observed [66]. A complicated mech-
anistic sequence has been described for liver CSCs where a long-non-
coding RNA HULC enhanced the growth of CSCs via miR675-PKM2 
autophagy. The latter reduced proteostatic stress and induced cell cy-
cle and proliferation kinases [67]. Another mechanism of how PKM2 
affects oxidative status has been demonstrated from studies on His-
tone Deacetylase (HDAC) inhibitors. In particular, PKM2-mediated 
PPP metabolism and increase of NADPH/NADP ratio were detected 
in osteosarcoma cell lines where Aldeyde Dehydrogenase (ALDH+) 
cells treated with valproic acid (HDAC inhibitor) appear induction of 
stemness [68]. Finally, the cooperation of PKM2 with Nrf2 - which 
is the central transcriptional factor of antioxidant and detoxification 
genes (i.e., ARE genes) - is included on the mechanisms that PKM2  

maintain redox equilibrium. Nrf2 has been demonstrated as the cen-
tral molecule in the Nrf2-Keap-ARE signalling pathway [69] and 
in basal conditions, it is targeted for proteasomal degradation by its 
cytoplasmic inhibitor, Kelch-like ECH-associated protein 1 (Keap1), 
while in oxidative conditions, Nrf2 degradation is abolished and Nrf2 
accumulates in the nucleus where it transactivates protective genes 
[69,70]. Recent studies have shown that Nrf2 induces the transcrip-
tion not only of antioxidant genes but also of metabolic-related genes 
such as PKM2 [71]. Μoreover, in vitro experiments have revealed 
that the Nrf2 pathway also facilitates the glucose uptake and the im-
port into PPP [72-74]. However, the exact implication of Nrf2-PKM2 
complex on metabolic plasticity of CSCs and on redox equilibrium 
remains obscure.

Targeting of PKM2: A Novel Anticancer Treatment 
Against Metabostemness
	 Several in vitro and in vivo experiments have demonstrated the 
use of Small Hairpin (SH) RNAs or chemical compounds that lead to 
inhibition of PKM2 or stabilization of PKM2 tetramer. This rationale 
could be used as a therapeutic strategy against metabolic reprogram-
ming of cancer cells and against metabostemness. 

	 Indeed, PKM2 inhibition has been proposed in upregulation of 
cells’ platinum sensitivity reducing cell proliferation and increasing 
cell apoptosis [55,75]. However, although silencing of pkm2 gene in 
HT29 intestinal cells interestingly increased the platinum resistance, 
in p53 wild type HCT116 intestinal cells pkm2 silencing induced 
chemosensitivity [76]. Likewise, inhibition of PKM2 via miR-122 in 
5-Fluorouracil (5FU) resistant colon cancer cells led to cell resensiti-
zation in 5FU [77]. These controversial results reveal that the diversi-
ty of CSCs metabolic profiles among several cancer types and among 
different microenvironments is a hard pitfall for the investigators to 
discover whether PKM2 targeting would have anticancer effect. Ex-
perimental models with xenografts and organoids may recapitulate 
the features of metabostemness and give information for the appro-
priate therapeutic strategy. 

	 Data for several types of cancer show that when PKM2 expres-
sion is upregulated cancer cells’ or CSCs’ treatment sensitivity is ar-
rested (Table 1). Targeting of PKM2 and metabostemness has been 
suggested as an innovative rationale for development of anticancer 
agents. Shikonin is a herbal extract from lithospermum erythrorhi-
zon that has been proposed as a novel PKM2 inhibitor resensitizing 
T24 bladder cancer cells in cis-platinum treatment [78,79]. In ML526 
and MEL697 melanoma cells another novel PKM2 inhibitor has been 
tested; called lapachol. Lapachol is a natural compound isolated from 
the tree, handroanthus impetiginosus and seems to sensitize ML526 
and MEL697 cells to apoptosis causing ferrotoxicosis and inhibiting 
glycolysis either in normoxic or hypoxic conditions [80]. This strat-
egy is in concordance with studies that support the metabolic gly-
colytic phenotype of melanoma cells along with the dysfunction of 
OXPHOS metabolic machine [81]. Vitamin K (VK) family members 
belong to naphthoquinones chemical group and several experiments 
have proposed VK3 and 5 as promising selective PKM2 inhibitors. 
In immortalised human T-lymphocytes and myelogenous leukaemia 
cell line, VK3 and Vitamin C improved synergistically the effective-
ness of doxorubicin [82,83]. Compound 3k which is a novel synthetic 
naphthoquinone derivative has also been characterised as selective 
inhibitor of PKM2 better than shikonin. 
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	 This anticancer effect of compound 3k revealed in experiments 
with HCT116, Hela and H1299 cells and by injecting it into xeno-
grafts [84]. TEPP-46 and DASA-58 are two selective pyruvate kinase 
activators meaning that stabilize the PKM2 enzyme in tetramer state. 
Studies in human cancer cell xenografts suggest that these PKM2 ac-
tivators can inhibit oncogenesis and alternate cancer metabolism in 
lung cancer cell cultures [55]. Another antineoplastic PKM2 inhibitor 
is the synthetic peptide TLN232 which is under evaluation in clini-
cal trials (phase II) for recurrent melanoma [85]. Even more, a sta-
ble sesquiterpene lactone called micheliolide accelerating the PKM2 
acetylation and PKM2 nuclear translocation inhibit leukaemia and 
glioma cells to survive and proliferate [86,87]. In terms of repurpos-
ing already approved treatments, metformin has been demonstrated to 
improve platinum-sensitivity of osteosarcoma stem cells downregu-
lating PKM2 levels [88]. Moreover, metformin has shown anticancer 
activity on gastric cancer cells via HIF1α/PKM2 inhibition as well 
as on bladder cancer cells treated with docetaxel, trastuzumab and 
pertuzumab [89,90]. Although benserazide belongs to established and 
approved anti-Parkinson treatment, studies on BRAFi resistant mel-
anoma cells (SK-MEL5/28) and on human embryonic kidney cells 
(HEK293) showed benserazide’s inhibitory effect on PKM2 resulting 

  

in apoptosis and avoidance of metastasis [91]. Finally, the first mole-
cule (MS-001) against metabolic plasticity of CSCs has been already 
designed by MetaboStem biotechnology company but its exact activ-
ity and effectiveness remain under investigation [92].

Conclusion

	 CSCs have been characterised as the origin of cancer cells and 
their ability of self-renewal and asymmetric division along with met-
abolic plasticity conform the phenomenon of metabostemness. This 
phenomenon has been proposed as a hallmark of chemoresistance, 
radioresistance, and cancer recurrence or metastasis. The metabolic
phenotypes of CSCs alternated each other in a way that CSCs can 
adapt into specific usually hostile environment conditions. PKM2 
seems to be a key regulator of metabolic reprogramming of CSCs  
perceiving in parallel the disturbance of redox equilibrium. Conse-
quently, a hypothesis of “the clock and the scale” can be created (Fig-
ure 1); the metabolic clock of CSCs has a dependent relation with 
oxidative scale and PKM2 regulates this relation. The exact factors 
that affect this triangle and especially PKM2 remain clear, although 
multiple therapeutic strategies against metabostemness have already 
been underway.

Agent Source Chemical category Indication Studies Reference 

Shikonin Natural (lithospermum erythrorizon) Alkannin Bladder Cancer [79]

Lapachol
Natural (handroanthus impetigi-

nosus)
Naphthoquinone Melanoma cell lines [93]

Compound 3k Synthetic Naphthoquinone Colon, Cervical, NSCLC cell lines [84]

Vitamin K Natural Fat-soluble vitamin
T-lympoma, Myelogenous leukae-

mia cell lines
[82]

Micheliolide Natural (Michelia spp.) Sesquiterpene lactone Leukaemia, glioma cell lines [87,94]

TEPP-46 Synthetic
Organosulfur heterocyclic, organonitrogen 

heterocyclic, organic heterobicyclic compound 
C17H16N4O2S2

Lung cancer cell lines, Xenografts [54]

DASA-58 Synthetic
A member of benzenes and a sulfonamide 

C19H23N3O6S2

Lung cancer cell lines, Xenografts [54]

TLN-232 Synthetic Cyclic heptapeptide
Recurrent melanoma (clinical 

phase II)
[84]

Metformin Synthetic Crystalline compound C4H11N5 • HCl
Treatment of type 2 

diabetes
Breast, bladder, gastric cancer 

cell lines
[89,90]

Benserazide Synthetic Carbohydrazide C10H15N3O5

Aromatic L-amino acid 
decarboxylase or DOPA 
decarboxylase inhibitor

BRAFi resistant melanoma cell 
lines

[91]

Table 1: Therapeutic agents against PKM2 and cancer stemness.
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