
Introduction
	 Stem cell niches similar to those observed in the present study 
have previously been identified in the human foetal elbow [1].  
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The aim of the present study was to determine if similar structures 
were also evident in hip and knee joint rudiments.

	 The stem cell is a specialized cell type that undergoes self-renewal 
to maintain a self-sustaining undifferentiated cell population within 
the stem cell niche [2]. The specialized microenvironment of the stem 
cell niche provides chemical and physical feedback cues which main-
tain the stem cells in a slowly recycling state of self renewal [3]. The 
stem cell niche acts as a reserve of cells for the replenishment of dam-
aged or dead cells with ageing or in disease or after traumatic damage 
to the tissue maintaining viable cell numbers and tissue homeostasis.

	 Perlecan (HSPG2) is a modular proteoglycan interactive with di-
verse Extracellular Matrix (ECM) and cellular components [4-6]. Per-
lecan is a major HS substituted proteoglycan component of basement 
membranes and vascular tissues [7] and is also present in a vascular 
tissues such as articular cartilage, intervertebral disc, meniscus and 
tendon where it is present as a hybrid HS-CS proteoglycan [8-11]. 
Interactions between perlecan and structural and cell adhesive gly-
coproteins such as laminin, fibronectin, WARP (von Willebrand A 
domain-related protein), PRELP (Proline/Arginine-Rich End Leu-
cine-Rich Repeat Protein), type IV collagen, type VI collagen, fibril-
lin-1, Latent Transforming Growth Factor Β1 Binding Protein-2 
(LTBP2), α2β1 and α5β1 integrins stabilize the ECM [12-14]. The HS 
chains of perlecan domain-1 bind Fibroblast Growth Factors (FGF), 
Vascular Endothelial Cell Growth Factor (VEGF), Platelet Derived 
Growth Factor (PDGF), BMP family members, Wnt (wingless-type 
MMTV [Mouse Mammary Tumor Virus]) integration site related 
proteins, hedgehog proteins regulating cellular adhesion, prolifera-
tion, differentiation, ECM synthesis, chondrogenesis and tissue mor-
phogenesis during skeletal development [8,14-17].

	 Perlecan is a component of a number of stem cell niches located 
in the allantois, intestine, bone marrow, limbal epithelium, nervous 
system and elbow perichondrium [1,18-23]. Perlecan has a role in the 
isolation of the stem cells from ECM components outside the niche 
which could result in activation, migration and development of dif-
ferentiated stem cell lineages [3]. FGF-2 is a major ligand for perlecan 
with roles in the long term viability of the niche stem cells [22,23]. Per-
lecan displays anti-adhesive properties to stem cells in bone marrow 
contributing to their isolation from extrinsic influences [24]. ECM 
components extrinsic to the niche are known to exert directive cues 
on cellular proliferation, adhesion and differentiation of stem cells [3]. 
Perlecan colocalises with type VI collagen pericellularly in chondro-
cytes and intervertebral disc cells [25,26]. Atomic Force Microscopy 
has demonstrated that perlecan provides compliancy to the type VI 
collagen pericellular matrix [27,28] and modulates tensile stresses oth-
erwise transmitted to cells within tensional and weight bearing con-
nective tissues through type VI collagen [27]. Perlecan also provides 
an adhesive interface between the chondrocyte and its surrounding 
ECM [25]. The cartilage rudiments act as a transient developmental 
scaffold transformed by chondroprogenitor cell populations during 
endochondral ossification resulting in elongation of the long bones 
and extension of the axial skeleton [29].
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Abstract
	 This study immunolocalized perlecan, Type I and II collagen and 
aggrecan in human foetal joint rudiment cartilages of the hip, knee 
and elbow. Blood vessels in the stromal tissues, associated with the 
cartilage rudiments were also prominently stained with perlecan, en-
trapped red blood cells aided in their identification. Perlecan was a 
prominent extracellular matrix proteoglycan in the rudiment cartilag-
es. Stem cell niches close to the margins of the cartilage rudiments 
were prominently identified in the hip, knee and elbow and were 
distinguishable from the aforementioned blood vessels which were 
located in the rudiment associated stromal tissues. Type I collagen 
was also immunolocalized to the outer margins of the rudiment car-
tilages where perlecan positive niches were also present whereas 
the remainder of the rudiment contained type II collagen. Stem cell 
niches similar to those observed in the present study have previous-
ly been identified in the human foetal elbow.
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Materials and Methods
	 Supplier details are as indicated in earlier studies, information on 
the use of the monoclonal antibodies to perlecan domain-1 (mAb 
A76), type I and II collagen, and aggrecan are also supplied in these 
publications [8-10]. Human foetal tissues (knees, elbow , hip) from 
one 10 week, three 12 week and four 14 week gestational age human 
fetuses were obtained with informed consent and all procedures were 
approved by our institutional ethics review committee.

Results
The stem cell niche and ECM components in macroscopic 
views of foetal hips
	 Cartilage canals were prominent features of the cartilaginous hip 
rudiment at 14 weeks gestational age (Figure 1). Perlecan and aggre-
can were widely distributed throughout the rudiment (Figures 1a & 
1c). Type II collagen was also a prominent component of the hip rudi-
ment in all but a surface region where type I collagen immunolocaliz-
es (data not shown). This area was evident as a blue region in the type 
II immunolocalizations (Figures 1b & 1e). Small punctate regions of 
high perlecan localization delineated the stem cell niches in the sur-
face regions of the rudiment (Figure 1d) within a region devoid of 
type II collagen (Figure 1e) but rich in aggrecan (Figure 1f).

Higher power views of hip stem cell niches
	 Higher magnification views of the hip rudiment perlecan immu-
nolocalizations clearly depicted the small stem cell niches (Figures 2a-
2c). Cartilage canals were larger and also contained perlecan in their 
outer walls (Figure 2b).

Stem cell niches in foetal knee rudiment cartilages
	 Examination of knee rudiment cartilages also demonstrated a 
prominent extracellular localization of perlecan throughout the  

femoral and tibial rudiments (Figure 3a). Small networks of cells 
within the surface regions of the rudiments were also prominently 
delineated by the perlecan immunolocalizations. We consider these 
are the stem cell niches and were clearly seen at higher magnification 
(Figures 3b & 3c) and clearly distinguishable from blood vessels which 
also contain perlecan immunolocalised in the vessel wall (Figures 3d 
& 3e). Red blood cells were observed within some blood vessels aid-
ing in their identification. A venule (Figure 3d) and arteriole (Figure 
3e) are shown. Blood vessels were considerably larger than the stem 
cell stained structures (Figure 3b) which occurred in the rudiment 
margins whereas blood vessels were present only in the stromal tis-
sue associated with the rudiments and did not occur in the rudiments 
(Figures 3d & 3e).

Stem cell niches have characteristic morphologies and dis-
tributions in the surface region of the cartilage rudiments 
of joints
	 Closer examination of the surface regions of a number of knee 
joints consistently identified these niche localisations of perlecan in 
the surface regions of the cartilaginous rudiments (Figures 4a-4d) in a 
region rich in type I collagen (Figure 4e) whereas the rudiment proper 
contained type II collagen (Figure 4f). Aggrecan was immunolocal-
ized diffusely throughout this outer marginal rudiment tissue zone as 
well as the rudiment proper (Figure 4g). While blood vessels were also 
prominently visualized in the stromal tissues bordering the rudiments 
these had a clearly differing morphology to the stem cell niche immu-
nolocalizations of perlecan (Figure 4h). Examination of an unstained 
cartilage specimen by Nomarski differential interference contrast 
microscopy showed that cellular morphologies and arrangement of 
matrix components were clearly different in all of the 3 zones, stroma  

Figure 1: Immunolcalisation of perlecan (a,d), type II collagen (b,e) and aggre-
can (c,f) in a 14 week old gestational age human foetal hip joint. Macrosopic 
views. Chromogen NovaRED, Scale bar 100 µm.

Figure 2: Higher power magnifications of the perlecan immunolocalisations 
depicted in figure 2a using perlecan domain-1 mAb A76. The boxed area in 
(b) is decocted in the inset (c). Small stem cell niches are prominent in the 
marginal tissue of the hip cartilage rudiments. Three cartilage canals are also 
evident deeper in the specimen. Perlecan is also an extracellular component 
of the cartilage rudiment. Scale bars 100 µm.
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(zone 1), rudiment margin (zone 2) and rudiment (zone 3) (Figures 
4i-4k). The cell density in zone 1 was lower than the other two zones 
(Figure 4i) whereas in the marginal tissue of the rudiment prominent 
longitudinal fibrillar material was present running parallel to the ru-
diment surface (Figure 4j). The cells in this region had an elongat-
ed morphology (Figure 4k), type I collagen was immunolocalized to 
this tissue region (Figure 4e). The cells within the rudiment proper 
(zone 3) had a rounded morphology typical of chondrocytes and were 
considerably larger than the cells in the stromal tissue or rudiment 
margins. The cells in zone 3 were contained within lacunae similar to 
those seen in hyaline cartilaginous tissues.

Type I collagen immunolocalizes to the surface regions of 
newborn hip joints
	 Unfortunately we were unable to source newborn human tissue 
for comparison with the foetal tissue however immunolocalization of 
type I collagen in newborn lamb hip tissue also demonstrated it had 
a prominent localization in the surface region of the hip (Figure 5a) 
and around the cartilage canals within it. The hip tissue is cartilagi-
nous at this stage of development. In contrast to the type I collagen 
immunolocalizations, type II collagen and aggrecan were immuno-
localized throughout the hip rudiment (Figures 5b & 5c). Perlecan 
was also immunolocalized throughout the hip specimens (Figure 
5d). The prominent stem cell niche arrangements so evident in the 
human foetal joint rudiments examined in this study were not evident 
in the newborn hip specimens which apparently indicates these are 
developmental features of human foetal joints. Immunolocalization of 
perlecan in a 10 week old human foetal hip rudiment showed perle-
can was a prominent ECM proteoglycan, small arrangements similar 
to those observed in the other foetal cartilages were again present in 
the surface regions of the rudiments however the humeral head had 
not completely separated from the adjacent acetabulum at this stage of 
joint development (Figure 5e). Such perlecan positive arrangements  

were also observed in a 12 week old human foetal elbow rudiment 
(Figure 5f) in the surface regions of the cartilage rudiments (Figures 
5g & 5h).

Figure 3: Immunolocalization of perlecan in a 12 week old gestational age 
human foetal human knee. Macroscopic view (a) and higher power magnifica-
tion of areas of interest (boxed areas in (a). Stem cell niches are prominently 
immunolocalized (b,c). Immunolocalization of perlecan delineating a venule 
(d) and arteriole (e) in the stromal tissue surrounding the cartilage rudiment. 
Red blood vessels are visible within these vessels aiding in their identification 
as blood vessels. Scale bar 100 µm.

Figure 4: Immunolocalization of stem cell niches using mAb A76 to perlecan 
domain-1 in the outer margins of a tibial cartilaginous rudiment (12 week ges-
tational age) (a-d) and type I collagen (e) type II collagen (f) and aggrecan 
(Acan) (g) in the cartilaginous rudiment (zone 3) and rudiment marginal tissue 
(zone 2). Immunolocalization of two prominent blood vessels in the stromal 
tissue (zone 1) adjacent to the rudiment (zones 2,3). Perlecan is also an ex-
tracellular matrix component in zone 3 (h). Unstained black and white Nomar-
ski phase contrast DIC images of representative areas of zone 1-3 clearly 
identifying differences in cellular morphology and matrix organization in these 
areas (i-k).

Figure 5: Macroscopic immunolocalization of type I collagen (a), type II col-
lagen (b) aggrecan (c) and perlecan (d) in a newborn ovine hip joint and 10 
week gestational age human foetal hip joint which has only partially separated 
from the acetabulum (e) and a 12 week old human foetal elbow (f). Cartilage 
canals are prominent in (a-d). Small stem cell niches are evident in the mar-
ginal rudiment tissues of (e and f). NovaRED chromogen, Scale bars 100 µm.
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Discussion
	 The present study demonstrated roles for perlecan in foetal human 
joint development not only as an ECM component in the cartilaginous 
rudiments but also as a stem cell niche component with potential roles 
in the regulation of stem cell differentiation. This is in keeping with 
perlecans known roles in chondrogenesis [8] and the regulation of cel-
lular adhesion and proliferation in skeletal development [5,15,16,30]. 
The complexity of the dynamic native stem cell niche microenviron-
ment is a function of the surface biochemistry, topography (type, size, 
organization, and geometry of nanostructures), and their mechanical 
properties determining whether the stem cell remains in a quiescent 
non-differentiated state or otherwise. Signalling pathways involving 
Notch, Wingless-type (Wnt), Sonic hedgehog (Shh), and Smad pro-
teins are important determinants of self-renewal and differentiation 
of stem cells. Type I collagen is a component of many stem cell niches 
[31,32] and may provide an interactive mechanical and biochemical 
niche environment conducive to stem cell differentiation, adhesion 
and migration [33-38]. MSCs sense a 3D environment containing 
type I collagen through discoid in domain receptor-1 [31]. The local-
ization of type I collagen around the stem cell niches identified in the 
present study may therefore be important for stem cell differentiation 
and the morphogenesis of rudiment cartilage to bone [29]. Type I col-
lagen occurs in tissues to counter tensional forces, the tensional prop-
erties of growth surfaces have been shown to be an important modu-
lator of stem cell behavior. Perlecan colocalises with collagen networks 
in the pericellular matrix of cells providing compliancy properties to 
tissues thus the localization of perlecan in the stem cell niche may 
counter the tensile properties conveyed by the type I collagen outside 
the niche. Atomic Force Microscopy (AFM) of single hip chondro-
cytesin a mouse model of Schwartz Jampel syndrome demonstrated 
a significant effect on cell and tissue stiffness implicating outside-in 
mechanical signalling from the pericellular matrix as a dynamic stim-
ulant to cellular development [39]. A similar scenario may also apply 
to the regulation of stem cells in the perlecan niches observed in the 
present study. While we refer to these as stem cell niches throughout 
this manuscript these should more correctly be considered “putative” 
stem cell niches based on the data we have presented in the present 
study. Unfortunately we were not able to undertake immunolocaliza-
tions with other antibodies to confirm the identity of these perlecan 
positive structures and this is a weakness of our study. However we 
considered the observations we made were nevertheless important 
enough to expound such an interpretation and in our opinion terming 
these as niches fitted a number of criteria proposed in other studies as 
to what constitutes a niche. Further studies should aim to rectify this 
deficiency.

	 The Wnt family of growth factors are ancient metazoan proteins 
which are conserved throughout vertebrate and invertebrate evolu-
tion. Wnt proteins (the name Wnt is a fusion of the name for the Dro-
sophila segment polarity gene ‘wingless’ and its vertebrate homolog, 
‘integrated or int-1’) regulate stem cell fate, migration, proliferation 
and self-renewal [40-44]. Extracellular Wnt protein induces a number 
of intracellular signal transduction pathways of importance in stem 
cell differentiation, tissue development and repair [40,41,43-45]. Per-
lecan regulates bi-directional Wnt signaling in Drosophila [40,46-49] 
and growth factor signaling in C.elegans [50] and also stabilizes the 
matrix surrounding the stem cell niche. Recent studies in the hu-
man foetal elbow showed that perlecan localized with type I collagen 
surrounding the stem cell niches [1]. Type I collagen normally con-
veys tensile forces in tissues, AFM studies have shown that perlecan  

provided compliancy to the type VI collagen pericellular matrix sur-
rounding chondrocytes where these components were co-localized as 
in IVD cells [25,27,28]. Thus the perlecan, which delineates the stem 
cell niches observed in the present study, may modulate the prop-
agation of tensile forces to the niche stem cells from their external 
micro-environment. Knockdown of perlecan lowers in situ cell and 
matrix stiffness in developing cartilage [39]. The stem cell microenvi-
ronment is influenced by matrix stiffness, and mechanical forces expe-
rienced from fluid shear, compression and tension, and these regulate 
the proliferation and differentiation of stem cells [51-54]. MSCs sense 
biomechanical forces through primary cilia which are colocalised 
with calcium ion channels resulting in responsive changes in mecha-
nosensitive ion channel associated proteins such as transient receptor 
potential melastatin 7, a mechanosensitive plasma membrane calcium 
channel protein, and changes in their cytoskeleton [54]. An influx of 
Ca2+ ions into MSCs has attendant effects on the formation of intracel-
lular signaling molecules such as inositol triphosphate, changes in the 
actin/actomyosin cytoskeleton and the activation of associated signal-
ing pathways. The associated change in cell shape and co-ordination 
of focal adhesions acts as a primer for MSC migration. MSCs are also 
capable of secreting active heparanase-1 which degrades the HS side 
chains of perlecan [55]. Heparanase released from MSCs also activates 
Integrin beta1/HIF-2alpha/Flk-1 signaling and stem cell migration 
[55,56]. Many stem cell populations utilize the SDF-1/CXCR4 axis 
to effect migration [57-61]. The release of progenitor cell populations 
from their niches by heparanase-1 is consistent with emerging roles 
for heparanase-1 and 2 in the promotion of wound repair [62,63]. Live 
cell imaging of stem cell niches where the niche is de-stressed results 
in a change in the stem cell quiescent state to a migratory phenotype 
which can home to sites of tissue damage [64,65]. This is consistent 
with roles proposed for biomechanical forces and ECM directive cues 
in the regulation of stem cell phenotype in vivo and the promotion of 
wound healing [3,66-69].

	 The stem cell arrangements visualized in the present study were 
present in the rudiment margins and were clearly distinguishable 
from blood vessels in the stromal tissues. Like other cartilages, the 
rudiments contain anti-angiogenic proteins refractory to the penetra-
tion of blood vessels [14,70]. An earlier confocal study of the human 
foetal elbow demonstrated perlecan positive niches in the outer re-
gions of the perichondrium along the shaft of the long bones [1]. Ac-
tivated stem cells displaying the CS sulphation motifs 4C3, 3B3(-) and 
7D4 were closely associated with these perlecan positive niches [1]. 
Chondroprogenitor stem cells have also been identified in the surface 
regions of the presumptive articular cartilage of the knee joint follow-
ing joint cavitation [71,72].

	 With an increased awareness of the role of extrinsic forces on stem 
cell regulation in situ [3], regenerative approaches are now being de-
veloped using bio-scaffolds with defined tunable tensional properties 
to modulate stem cell differentiation in vitro [68]. Decellularised tis-
sues with their ECM, biochemical and structural cues intact in the 
stem cell niche are also being evaluated for their ability to modulate 
stem cell behaviour in culture and modify stem cell proliferation and 
differentiation [73]. The stiffness of biomaterials is an important de-
terminant which drives stem cell proliferation and differentiation [74]. 
Evaluation of matrices synthesized by human fibroblasts has shown an 
increase in stem cell proliferation and differentiation, down-regula-
tion of adipogenesis and osteogenesis but promotion of chondrogen-
esis [69]. In the human foetal elbow the perichondrial stem cell niche 
is contained in a matrix layed down by fibroblastic cells in the outer  
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regions of the perichondrium. These regions of the perichondrium are 
rich in type I collagen [1] and are similar to the areas of type I colla-
gen deposition between the rudiment and associated stromal tissues 
observed in the present study and which also contain stem cell niches.

	 Matricryptins and matrikines have received considerable attention 
as prospective agents for tissue repair through their ability to modify 
stem cell behavior stimulating proliferation and differentiation [70], 
some matrikines stimulate stem cell migration. Chondroitin Sulphate 
(CS) is another Glycosaminoglycan (GAG) which is considered in-
dispensable for stem cell pluripotency and stem cell differentiation 
[75], We are now in an exciting era in regenerative medicine and may 
be optimistic that armed with greater knowledge on how stem cells 
are regulated in their niches we may someday be able to manipulate 
these to improve their replicative, differentiative and migratory prop-
erties in situ to obtain the critical numbers of stem cells of specific 
cell lineages required at defect sites for regenerative applications. It is 
to be expected that a greater understanding of how stem cells target 
damaged tissues will also greatly improve the utility of stem cells as 
therapeutic agents.
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