
Introduction
	 Recent advances in Computer-Aided Design/Computer-Aided 
Manufacturing (CAD/CAM) technology have enhanced the potential 
for Additive Manufacturing (AM), known as Three-Dimensional (3D) 
printing, for use in fabrication of 3D scaffolds for tissue engineering 
applications. 3D printing was initially introduced by Charles W Hull 
in 1986. Hull’s technique, termed stereolithography, utilizes ultravi-
olet light to cure thin layers of a material on top of existing layers, 
sequentially forming a three-dimensional structure [1]. 3D bioprint-
ing is an interdisciplinary practice closely related to engineering and 
life sciences. It aims to develop 3D organ constructs that maintain,  
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restore, or improve tissue function [2,3]. Layer-by-layer deposition 
allows for precisely and selectively deposited biological materials, 
biochemicals and, living cells.

	 The development of such 3D in vitro systems has attracted in-
creasing attention in healthcare. This is predominantly driven by two 
needs: a limited supply of organs [4] and a demand for less expensive 
drug testing models [5]. The demand for organ transplantation has 
grown rapidly in recent years. Between 2006 and 2016, the number 
of patients in the United States on the organ transplant waiting list 
increased from 95,000 to 160,000 [6]. The substantial growth of the 
wait list illustrates the demand for new transplant solutions. In ad-
dition, lack of accurate 3D models for drug screening and medical 
mechanism studies is a niche that 3D bioprinting aims to fill.

	 Currently available Two-Dimensional (2D) cell culture valida-
tion techniques and animal testing models used for drug discovery 
and analyses of biochemical agents have a number of drawbacks. 2D 
culture methods fail to reproduce the in vivo microenvironment or 
recapitulate organ-level physiology properly, and animal models may 
poorly mimic the corresponding mechanisms in humans, tending to 
lead to ethical concerns [7]. For these reasons, 3D bioprinting technol-
ogy holds great promise in the manufacture of engineered tissue con-
structs. This mini-review summarizes the primary and most common 
3D bioprinting techniques used in tissue engineering. Fundamentals 
of these bioprinting methods and an overview of the formulations and 
properties of the bioinks and cell sources they use are provided. This 
article also provides commentary on the current limitations of 3D bi-
oprinting technologies used for tissue engineering applications.

3D Bioprinting Process
	 In general, the process for bioprinting 3D tissues can be divided 
into three primary steps:

Pre-bioprinting

	 The overarching goal of this step is to generate a 3D pin-point 
tissue or organ model that can be created using medical imaging tech-
nology or Computer-Aided Design (CAD). X-ray, Computed Tomog-
raphy (CT) and Magnetic Resonance Imaging (MRI) are the most 
common imaging techniques utilized to provide information on the 
anatomical structure of the tissue or organ [8]. Design engineering 
software then “slices” a 3D model into horizontal cross-sectional lay-
ers creating stereolithography data that is then utilized in 3D-bioprint-
ing for layer-by-layer stereolithographic accumulation to fabricate a 
3D physical model [9].

Bioprinting

	 The next step is development of bioink for bioprinting of the tissue 
construct. Bioink refers to a cell-laden fluid material that may include 
biomaterials, cells, growth factors, microcarriers, etc. Development 
of appropriate bioink is a critical step for successful bioprinting. 
Properties of the bioink such as printability, biocompatibility, cell 
viability and mechanical properties strongly influence the printed  
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Abstract
	 Tissue engineering aims to develop constructs that maintain, re-
store, or improve tissue function. Recent advancements in Three-Di-
mensional (3D) bioprinting have brought great potential for tissue 
engineering of many different tissues and organs, such as skin 
and heart. While advances in biomanufacturing organs and tissues 
have occurred, organs are highly complex and challenges in reca-
pitulating the intricate structure and function of organs with current 
methods remain. Primary and most common bioprinting methods 
are described here; and, an overview of bioink formulations and cell 
sources used in 3D bioprinting is provided. Finally, current challeng-
es and future needs are discussed.
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tissue construct [10,11]. Likewise, it is crucial to choose an appropriate 
printing method and determine the optimal processing parameters as 
both directly impact the final bioprinted tissue construct.

Post-bioprinting

	 The post-bioprinting maturation process, which usually takes 
place in bioreactors, is a critical step for developing functional bio-
printed constructs via both physical and chemical stimulation [8].

3D Bioprinting Technologies
	 The primary 3D bioprinting techniques utilized for tissue 
engineering applications are classified as inkjet, microextrusion 
and laser- assisted printing. Prototyping principles, features, and 
applications of each of these techniques (Figure 1) are discussed next.

Inkjet 3D bioprinting

	 3D bioprinting initiated with researchers altering standard 2D 
inkjet printers in order to print bioink in successive layers. Inkjet 
printers work by depositing droplets of ink at precise points on 
a substrate. The droplets can be emitted from the reservoir nozzle 
using thermal, piezoelectric, or electromagnetic forces. Although  
these forces generate local extreme conditions, the transient nature 
of the pressure allows the cells to maintain viability with minimal 
stress [12]. Bioprinting with inkjet printers can be advantageous 
due to their ability to print at a relatively high-speed while being a 
commonly available, relatively low-cost technology. A drawback 
with use of inkjet printers is that special considerations need to be 
made in bioink selection. Since the ink has to be emitted from a small 
diameter nozzle at a high rate, low viscosity is paramount [13]. Even 
with the ideal bioink for an inkjet printer, clogging can still be an 
issue. Further, passing cells through a high-pressure bottle neck may 
have some effect on cellular function, including possible pressure to 
differentiate into a specific lineage when using stem cells [14].

Microextrusion 3D bioprinting

	 Microextrusion based 3D bioprinting, also known as Fused 
Deposition Modelling (FDM), is an additive manufacturing process  

that revolves around the deposition of a single near-continuous stream 
of material in successive layers to form the desired three-dimensional 
structure. The pressure on the reservoir can be supplied from a variety 
of mechanical apparatuses, with pneumatic / mechanical pistons 
and screw drive mechanisms being the most common. The biggest 
difference between microextrusion and inkjet deposition is the bioink  
that must be used. Microextrusion bioprinters have the advantage of 
being able to work with a wider range of viscous bioinks relative to 
inkjet and laser-assisted bioprinters [15,16]. However, although more 
viscous inks may be used, the high pressures generated when printing 
these inks can lead to effects on the cells. Even when cells can 
withstand the high shear forces of extrusion-based printing, they may 
have decreased viability or be mechanically stimulated to differentiate 
aberrantly [17]. Similar to inkjet bioprinting, nozzle clogging can be 
an issue since they both of these technologies utilize small diameter 
nozzles. Certain techniques, such as frequent cleaning and capping of 
the nozzle when not in use, can help prevent this issue.

Laser-assisted 3D bioprinting

	 Laser-Assisted 3D Bioprinting (LAB) utilizes a technique known 
as Laser Induced Forward Transfer (LIFT). In this process a laser 
beam is focused onto a precise point on a photo absorptive metal sheet 
(often gold or titanium). The energy absorbed by the metal is then 
transferred to a biologic solution underneath, which is then ejected 
from the reservoir onto a substrate. This method is advantageous be-
cause there is no nozzle to clog, and also because a relatively high 
printing resolution can be achieved [18]. LAB systems have a higher 
barrier to entry however, with some systems costing orders of magni-
tude more than inkjet bioprinters [19]. Even though a high energy la-
ser delivers the pulse to emit the bioink droplets, cell viability remains 
high with this technique (95% on average) [20].

Bioinks
	 The term bioink refers to any of the various combinations of 
biocompatible materials that are used in the 3D bioprinting process. 
They include both the biological component (cells and biopolymers) 
and synthetic materials that are present in some scaffolds. 
  

Figure 1: a) Inkjet bioprinter: A pulse thermal or piezoelectric stimulus causes fine droplets of bioink to be emitted from the nozzle. b) Microextrusion bioprinter: A stream of bioink 
is deposited in response to pressure exerted on the reservoir. c) Laser assisted bioprinter: A pulsed laser beam is directed at a band of metal which absorbs and transmits the energy 
to the bioink present underneath.
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	 Developing an ideal bioink has consistently been a paramount 
goal for 3D bioprinting. The diverse properties and functionalities 
of various tissues that exist in the human body make bioink 
properties more specific and complex. The diversity and complexity 
of modern bioink formulations reflect the corresponding variety 
and intricacy of the milieu found within the human body. An ideal 
bioink should generally have the properties of excellent printability, 
biocompatibility and mechanical integrity. Printability refers to the 
capability of a bioink to deposit precisely and accurately in order 
to fabricate a 3D tissue construct with high structural integrity 
and fidelity, whereas biocompatibility indicates that the bioink 
is cell friendly without eliciting cell death or excessive immune 
response. Biocompatible materials support cell adhesion, migration, 
proliferation and differentiation [21]. A gelled bioink must have 
sufficient strength and stiffness to preserve structural integrity, 
internal architecture and interconnectivity following in vitro and 
in vivo culturing. In order to meet specific, desired properties of a 
given bioink, the rational design of bioink is highly dependent on 
the bioprinting modality and cell type (Table 1). For example, inkjet 
3D bioprinting requires low viscosities and low thermal conductivity 
to prevent nozzle clogging and heat damage, while extrusion 3D 
bioprinting requires higher viscosities that may negatively affect 
cell viability [22]. Therefore, a vital step in bioprinting is to try and 
achieve an optimal balance between these bioink properties in order 
to meet specific needs of the target tissue. Typical materials utilized 
in bioprinting are comprised of naturally derived sources (including 
collagen [23,24], gelatin [25-27], fibrinogen [28,29], alginate [30-
32], chitosan [33-35], silk [20,36,37], hyaluronic acid [27,38]), and/ 

or synthetic materials (including polyethylene glycol (PEG)-based 
materials such as PEG diacrylate (PEGDA) and polyacrylamide 
(PAAm)-based gels [38,39]). An advantage of naturally derived 
polymers for 3D bioprinting applications is their inherently high 
biocompatibility. An advantage of synthetic polymers is that their 
physical properties can be modified to suit particular applications. 
However, there are challenges in using synthetic polymers including 
poor cell attachment, non-immunogenicity and loss of mechanical 
properties during degradation.

Cell Sources
	 The selection and utilization of an appropriate bioink for printing 
a 3D tissue construct requires consideration of cell types and tissue 
sources. The cell source used for tissue or organ bioprinting must 
take into account the function and composition of the tissue to be 
replaced. Transplanted tissues or organs must be able to restore the 
original function of the tissues or organs they are meant to replace; 
therefore, the bioprinting process must utilize a cell type that 
provides support for, at a minimum, the primary cell type in the 
tissue. Precise cell proliferation, regeneration and differentiation 
are the primary processes involved during vascularization and 
deposition of multifunctional layers in the bioprinting process. Cells 
used in the scaffold must mimic the primary cell type functions and 
structures in vivo and in vitro under optimum conditions (Table 2) [8]. 
Transplantation of bioprinted tissue requires analogous and patient-
specific cell components, of which the former can be obtained by 
biopsy or by differentiation of the patient’s stem cells. 

  Bioprinter type
 References

Inkjet 3D bioprinting Microextrusion 3D bioprinting Laser-assisted 3D bioprinting (LAB)

Viscosity (mPa/s) 3.5-12 30-6×107 1-300 [15,16,40,41] 

Gelation methods Chemical, photo-crosslinking
Chemical, photo-crosslinking, sheer thin-

ning, temperature
Chemical, photo-crosslinking [42,43-45] 

Resolution 50-300 µm wide droplets 100 µm to 1 mm wide 50µm [46-49] 

Accuracy Medium Medium-to-low High [50] 

Print speed Fast Slow Medium-to-fast [46,49,51,52] 

Nozzle size 20-150 µm 20 µm-millimeter Nozzle-less 16,40,53,54] 

Purchase cost Low Medium High [55] 

Preparation time Low Low-to-medium Medium-to-high [76,56-58] 

Cell density 106 - 107 cell/mL High, cell spheroids 106 - 108 cell/mL [46,59,60] 

Cell viability >85% 40%-80% 95% [12,58,61,62] 

Biomaterials used Hydrogels, fibrin, agar, collagen, alginate
Hyaluronic acid, gelatin, alginate, collagen, 

fibrin
Hydrogels, nano-hydroxyapatite [50] 

Examples applications Skin, vascular, cartilage Trachea, cardiac valve Skin [18,63-67] 

Organ Systems Cells types used in 3D Bioprinting

Cardiovascular Tissue Embryonic stem cells, Mesenchymal stem cells, Cardiac progenitor cells, Adipose derived stromal vascular fraction cells, Myoblasts

Musculoskeletal Tissue Mesenchymal stem cells, Myeloid-derived suppressor cells, Myoblasts

Neural Tissue Embryonic stem cells, Mesenchymal stem cells, Glioma stem cells, Neural stem cells

Hepatic Tissue Human induced pluripotent stem cells, Embryonic stem cells, hepatocyte like cells, iPSC derived hepatic progenitor cells

Adipose Tissue Adipose derived stem cells

Skin Tissue Amniotic fluid stem cells, Mesenchymal stem cells, Adipose derived stem cells, Epithelial progenitor cells

Table 1: 3D bioprinter methods in tissue engineering.

Table 2: Cells type used in 3D bioprinting [19].
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	 Further, most tissues are multilayered, with tissue function varying 
by layer, and often require specific cell differentiation to mimic the 
functions of the various layers. Because stem cells can differentiate 
into a multitude of cells with specific functions, they can serve as an 
excellent candidate cell source for synthesis of analogous cells in the 
bioprinting scaffold. There are several types of stem cells including 
embryonic, pluripotent, and adult stem cells [68].

	 Embryonic Stem Cells (ESCs) are pluripotent stem cells isolated 
from the blastocyst stage of in vitro fertilized embryos [69]. To grow 
ESCs, cells from the blastocyst stage are usually cultured on a feed-
er layer of irradiated mouse fibroblasts with growth factors; howev-
er, newer methods have been developed to culture cells without the 
mouse feeder layer so as to decrease the risk of viral transfer [70]. 
Many ethical debates were sparked by the use of fertilized embryos; 
therefore, other researchers began using dead embryos and single cell 
biopsy [71]. ESCs proliferating in culture for at least 6 months with-
out differentiating, that appear karyotypically normal, are considered 
an ESC line and can be frozen and sent to other laboratories for use. 
They can then undergo directed differentiation into various cell types 
[19]. However, ESC use in research in the U.S. is currently limited 
due to ethical concerns [72].

	 Induced Pluripotent Stem Cells (IPSCs) are somatic cells that can 
be reprogrammed into stem cells. For the development and generation 
of induced pluripotent stem cells, four transcriptional factors (present 
in embryonic stem cells; Oct3/4, Sox2, c -Myc, Klf4) are introduced 
into fibroblasts using viruses as a host [73]. The inner cell mass des-
tiny is monitored by expression levels of Oct 3/4. The interaction 
of Sox2 with Oct3/4 develops and controls gene expression levels 
and maintenance of pluripotency. c-Myc controls differentiation and 
growth while the regeneration of stem cells and maintenance of plu-
ripotency is regulated by Klf4 [74]. Pluripotent or immature cells at 
the stage of primed pluripotent stem cells do not have more capacity 
for differentiation as compared to embryonic stem cells but can devel-
op enhanced risk of teratoma formation [69].

Adult Stem Cells
	 Bone marrow Stem Cells (BMSCs) are a type of adult stem cell 
found in bone marrow. Adult stem cells are multipotent and reside in 
an area called the “stem cell niche.” They usually remain quiescent 
until they are activated to maintain normal tissues or repair diseased 
and injured tissues. They typically exist in small quantities and have 
a limited capacity to divide in vitro. It is thought that BMSCs will not 
induce rejection after transplantation of differentiated cells, thereby 
eliminating the need for immunosuppressive drugs that have many 
harsh side effects [75]. Bone marrow contains both hematopoietic 
stem cells and stromal stem cells, also known as mesenchymal stem 
cells. The stromal stem cells make up a small portion of the bone 
marrow and can generate many tissue types [76]. They require less 
in vitro manipulation than ESCs and iPSCs, and have a much low-
er rate of malignant transformation than iPSCs [76]. However, their 
proliferation and differentiation potential changes with increasing age 
[77,78] and harvest of BMSCs requires a painful procedure [79].

	 Adipose Derived Stem Cells (ADSCs) are another type of adult 
stem cell which is abundant in white adipose (fat) tissues [80]. 
Adipose derived stem cells are present in larger numbers and have 
five times the lifespan compared to adult bone marrow stem cells  
 

[80,81]. Cartilage and bone engineering can be done by using adipose 
fat tissues although it has been published that more precise results 
may be obtained by use of an infrapatellar fat pad source [82,83]. 
Adipose derived stem cells are useful and helpful for the synthesis and 
fabrication of analogous tissue and have great potential for multiple 
tissue engineering applications [84].

	 In a 3D bioprinted construct, a high rate of cellular proliferation may 
be required to ensure appropriate ratios of functional and supporting 
cells. Ideally, proliferation should remain at a constant and appropriate 
rate in order to maintain tissue homeostasis without the formation of 
hypertrophic cells (an initial sign of tumor). Techniques have been 
developed to overcome this problem, such as viral transfection or 
utilization of small molecules to prompt cell proliferation. Irregular 
proliferation may cause disturbances in the construct cell type. 
Likewise, differentiation depends upon many different factors at 
play during the creation of bioprinted constructs. Differentiation 
is affected by mechanical properties and characteristics of bioink 
scaffolds, which vary depending on the tissue type and compatibility 
[85,86]. Stem cell differentiation within the bioprinted scaffold is 
primarily regulated by two main structural factors: scaffold density 
and elasticity. Strong and stiff scaffolds (9-31 kPa) have been shown 
to stimulate differentiation toward musculoskeletal lineages whereas 
elastic and soft scaffolds (0.1-5 kPa) may stimulate differentiation 
into adipose and neural lineages [87-90]. Re-creation of the native 
environment for any given tissue type involves recapitulating in vivo 
stresses and stimulation of stem cell differentiation [87]. Mechanical 
properties exhibit heterogeneity between morphology and variety of 
composition and internal organization. In general, the cytoskeleton  
in stem cells usually re-forms and rearranges during lineage 
specification and modulates mechanical characteristics by 
accumulation of intracellular metabolites. Growth factors and other 
chemical stimuli further the cell differentiation process across 
different cell lineages in a tissue specific manner for expression of the 
appropriate phenotype.

	 Cells at this stage are usually fully differentiated, multipotent and 
exist at a high density [91]. Additive factors (e.g. growth factors and 
chemicals in the bioink) are one of the primary and direct approach-
es that can affect stem cell differentiation [86]. These factors may 
be added before or after the printing process. They can alter cellular 
mechanics and affect the differentiation process. Fibroblast growth 
factor, platelet-derived growth factor, ascorbic acid, dexamethasone, 
and bone morphogenetic proteins are some common examples of bio-
active molecules used to enhance bioprinted constructs. Microcarriers 
(small polymer spheres) are another class of additives that stimulate 
the differentiation of stem cells while acting as a source of adhesion 
and providing stiffness [92]. For bioprinting applications, the cells 
must be able to tolerate multiple mechanical and chemical stressors 
such as pressure, shear stress, aberrant pH, and the presence of tox-
ins or enzymes once transplanted. Certain bioprinting technologies 
are designed to carefully deposit cell types that are more sensitive 
to shear stress during preparation of the construct. Hence, cellular 
proliferation and the differentiation processes are key players in the 
efficacy and functionality of cells for bioprinting applications [68].

Outlook and Future Challenges
	 The field of bioprinting is at an early developmental stage and has 
garnered some notable successes in creation of transplanted functional  
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constructs for a variety of tissues [68]. One of the main challenges in 
3D bioprinting is designing suitable bioinks for each tissue type that 
meet the required mechanical, biological and physiological properties. 
Development and engineering of innovative bioinks or biomaterial 
formulations remain major areas of interest and investigation. For this 
purpose, more work will be required in the creation of new matrices 
and models to evaluate and monitor the characteristics and processes 
of a variety of bioink materials. The field of bioprinting also strives 
for enhanced resolution, speed and biocompatibility. Bioprinting 
has been developing to expand the range of compatible materials 
and methods for deposition of materials with greater specificity and 
accuracy.

	 Vascularization remains another major challenge in the area of tissue 
engineering and bioprinting 3D tissues with appropriate functions. 
Having adequate vascularization in bioprinted constructs is a critical 
factor for long term functional 3D bioprinted tissue. Without adequate 
cellular perfusion, cells may die of hypoxia and exhibit stagnant 
growth due to waste and toxin accumulation. Effective construction 
of a multi-scale perfused vascular network, and subsequent 
promotion of its vascularization through mechanical or chemical 
stimulation, is a basis for biofabricating more voluminous tissues 
[93]. Traditional 3D bioprinting platforms have been predominantly  
used to design and engineer 3D bioprinted constructs in vitro prior to 
subsequent implantation of the construct into the body. However, in 
terms of clinical applicability, the in vitro bioprinting approach may 
have some logistical challenges including: i) 3D bioprinted constructs 
are often fragile, and internal micro-features may be disrupted during 
transport from the fabrication room to the operating room; ii) a highly 
sterile environment is required; and iii) necessity to modify and  
trim the bioprinted construct prior to implantation. This last challenge 
arises when the geometry of the bioprinted construct differs from 
the actual defect size as a result of limited resolution capability of 
the CT and MRI scans utilized to create the construct. Due to these 
challenges, in situ bioprinting directly in the body in the clinical 
setting has been proposed [94,95]. Two primary in situ technologies 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

have been developed: i) a highly portable handheld printer [96-98] 
(Figure 2), and ii) a robotic arm carrying the bioprinting unit which 
is capable of performing real-time printing [99] (Figure 3). To date, 
various studies have shown the feasibility of the in situ bioprinting 
concept for regeneration of skin [42], cartilage [96], and bone 
[100]. While much progress has been made with in situ bioprinting 
technologies, numerous challenges remain, including but not limited 
to: i) requiring a large number of cells before surgery, ii) need for 
printers with high resolution, iii) creation and utilization of bioinks 
that can form the desired stable structure instantly and prompt tissue 
regeneration, iv) ethical dilemma, and v) high cost.

	 In summary, 3D bioprinting is a promising technique for the 
generation of functional engineered tissues. Different methods 
including inkjet, extrusion, laser assisted and subtractive techniques 
are common technologies used for bioprinting, and every method has  
its own advantages and disadvantages (Table 1). Ideally, bioprinting 
approaches would have high resolution and speed and utilize an 
optimal bioink that supports necessary mechanical and biological 
needs as well as a robust vascularization process. With these goals in 
mind, choosing the appropriate bioprinting technique and developing 
an appropriate bioink with a cell type that supports the primary cells 
of interest are vital steps toward successful fabrication of a printed 
tissue construct.

Conclusion
	 Three-dimensional bioprinting techniques have garnered great 
interest and exhibited significant advancements for tissue engineering 
applications during the last decade. These methods have led to hope 
for improvement in regenerative medicine and the ability to move 
patients off years-long transplant lists. 3D bioprinting is currently 
experiencing rapid development. While many challenges remain, 
initial studies have shown promise toward fabrication of functional 
printed tissues and organs; however, more time and effort in 
multidisciplinary research is needed to surpass these challenges so 
that engineered tissues can be fully utilized in the clinical setting.

Figure 2: a) Schematic drawing of full thickness chondral defects in weight bearing areas of the medial and lateral femoral condyles of both stifle joints in sheep. b) Intra-operative 
image of handheld printer. c) Defect filled with handheld in situ 3D printed HA-GelMA scaffold and coated with fibrin glue spray. d) Macroscopic image of repaired cartilage defect. 
Figure reproduced with permission from Di Bella et al. [96].
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