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Introduction
	 Zinc is an essential element for many biological activities in-
cluding enzyme regulation, mitochondrial oxidative stress, normal 
growth, spermatogenesis, digestion and regulation of central nervous 
system [1]. The concentration of zinc in the body is precisely regu-
lated, and imbalance of zinc would accompany several pathologies 
including Alzheimer [2-4], cancer, growth retardation, blindness, di-
gestive problems and inflammation [5]. In human body, about 90% of 
Zn2+ is found in bone and muscle [6]. About 0.1% of bodily Zn2+ is 
in the serum 60% of it bound to albumin and the remaining to other 
proteins [7-9]. On the tissue level, 30-40% of Zn2+ is found in the 
nucleus, 50% in the cytoplasm and the rest in cell membranes [10]. 
The concentration of Zn2+ in the blood is 3.14mg/l or 4.8mM [11] 
and in semen ~2mM which is positively correlated with sperm count 
and normal morphology [12]. Zn2+ deficiency triggers autophagy in 
yeast [13], which would affect spermatogenesis. It has been shown 
that Zn2+ supplementation improves serum testosterone levels [14], 
sperm count [15], plasma membrane and acrosome integrity [16] and 
restores superoxide antioxidant capacity in asthenospermic men [17]. 
Interestingly, Zn2+ improves intestinal epithelial barrier function [18] 
and the integrity of mammary epithelium [19]. Thus it is possible that 
Zn2+ might enhance the integrity of the epithelium in the capacitation 
site in the female reproductive tract, resulting in improving sperm 
fertility. Too high Zn2+ in the dietary to both male and female rats 
shows significant reduction in fertility [20]. Zn2+ has been linked with 
key events in the accomplishment of fertilization ability including hy-
peractivation and acrosomal exocytosis. Defects in sperm quantity, 
quality and motility account for up to 50% of infertility cases and 
may affect about 7% of all men [21]. About 25% of infertility cases 
in human are defined as “unexplained infertility”, and in many cases, 
a successful fertilization in these men can be achieved by Intra-Cy-
toplasmic-Sperm-Injection (ICSI) technique. On the other hand, in a 
not negligible part of these unexplained cases, despite normal sperm 
quantity, morphology and motility, no egg penetration/fertilization 
occurs. It is well documented that in order to fertilize, sperm should 
reside in the female reproductive tract for several hours, in which 
they undergo a series of biochemical and motility changes collective-
ly called capacitation allowing the spermatozoon to interact with the 
egg, undergo acrosomal exocytosis and penetration into the egg. Thus 
it is possible that a significant part of unexplained infertility, that have 
not been resolved by bypass techniques like ICSI, are in fact caused 
by spermatozoon failure to performing proper capacitation.

	 It was shown that zinc deficiency is correlated with a decrease in 
male fertility [22,23] and zinc in the dietary of dometic animals is re-
quired for the achievement of higher fertility rate [24-26]. Sperm mi-
tochondrial sheath [27,28] and sperm chromatin [29,30] are stabilized 
by zinc bridges. In this review we will focus on the effect of Zn2+ on 
sperm capacitation, acrosomal exocytosis, including the mechanisms 
of action and the impact of zinc supplementation on fertilization as-
sisted techniques.

Regulation of Zn2+ Levels in the Cells
	 Research in C. elegans identified many genes that were defec-
tive in spermatogenesis (spe) and fertilization when mutated [31,32]. 
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Abstract
	 The importance of zinc ion in male fertility was recently proposed 
in several studies. In the present review we describe the properties, 
roles and cellular mechanisms of action of Zn2+ in spermatozoa. We 
focused on the involvement of zinc ion in sperm motility, capacitation 
and acrosomal exocytosis, three functions that are crucial for suc-
cessful fertilization. The impact of zinc supplementation on fertiliza-
tion assisted techniques is also described.
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For example, spe-8gene that encodes protein tyrosine kinase, in-
volved in protein tyrosine phosphorylation [33,34], a known process 
that occurs in sperm capacitation [35]. Several proteins function with 
SPE-8, mediating signaling pathways that promote motility [36,37]. 
It has been suggested that zinc may initiate SPE-8 signaling cascade 
leading to sperm activation [38,39]. Working on zinc-transporters 
revealed that deletion of the homolog zipt-7.1, caused sterility [40]. 
Zipt-7.1 is a transmembrane protein localized within intracellular 
organelles [41,42] and together with SPE-8 regulates the release of 
Zn2+ from internal stores. The released Zn2+ in the cytoplasm activates 
zinc-regulated proteins that develop motility. Thus, Zn2+ may be con-
sidered as second messenger which modulates sperm functions like 
motility and capacitation. This suggests that intracellular Zn2+ levels 
should be well controlled by zinc transporters localized in intracellu-
lar membranes and in the cell plasma membrane which import Zn2+ 
from external environment [43].

Effect of Zn2+ on Sperm Capacitation and Acrosomal 
Exocytosis
	 Extracellular zinc had an impact on the intracellular signaling 
pathway via its interaction with the Zinc Sensing Receptor (ZnR), 
named also GPR39 [44]. This receptor was found in the sperm ac-
rosome and tail [45-47] suggesting a possible involvement of zinc 
in sperm functions. We showed that Zn2+ stimulates bovine sperm 
acrosomal exocytosis [45] as well as Human sperm Hyperactivated 
Motility (HAM) [46] both mediated by GPR39. The GPR39 belong to 
GPCR family known to activate the Trans-Membrane-Adenylyl-Cy-
clase (tmAC). Human sperm treated with 5µM Zn2+ show a 40% in-
crease in intracellular cAMP which is an important event in the capac-
itation process [45]. It seems that zinc mediates the activity of the two 
AC isoforms, the sAC as well as the tmAC, leading to intracellular 
cAMP increase; an effect that was inhibited by the respective specific 
proteins inhibitors. Surprisingly, the stimulatory effect of extracellu-
lar added 8Br-cAMP (a membrane permeabile cAMP analogue) on 
HAM was also inhibited by sAC inhibitors, conditions by which the 
cellular levels of cAMP should not be affected [46]. A possible ex-
planation for this result would be that cAMP supplied to the cells is 
excluded from cellular locations in which sAC provides cAMP for 
HAM. Interestingly, attempts to bypass the need for sAC activity by 
providing cAMP did not restore fertilization competence of sAC-null 
sperm [48]. It has been shown that in vitro addition of high concentra-
tion of Zn2+to bovine [45] and human [46] sperm could lead to the in-
hibition of several capacitation processes and fertility rate [49]. Zinc 
has antioxidant activity and may decrease Reactive-Oxygen-Species 
(ROS) levels [16,50]. It was shown that ROS production is essential 
for sperm capacitation [51,52] however relatively high levels of ROS 
can harm sperm functions [53]. Thus low zinc concentration might 
be beneficial in reducing too high levels of ROS, whereas high zinc 
might decrease ROS to a level that is inhibitory to sperm capacita-
tion. A relatively high concentration of Zn2+ in the millimolar range 
inhibits human sperm motility [54] and regulates the degradation of  
semenogelin that prevents capacitation via inhibition of ROS genera-
tion [46,55]. This high [Zn2+] also inhibits the voltage-gated H+-chan-
nel Hv1, localize in sperm tail and responsible for sperm cytoplasmic 
alkalization [56,57] and the regulation of human sperm rotation [58]. 
The cytoplasmic alkalization leads to the activation of the sperm-spe-
cific Ca2+-channel CatSper [59] which mediates the development of 
the capacitation dependent HAM [60]. The stimulatory effect of Zn2+ 
on human sperm HAM is inhibited by CatSper inhibitor indicating  

that CatSper mediates Zn2+-stimulated HAM [46]. Zinc enhanced 
Protein-Kinase A (PKA) activity, Src and Epidermal-Growth-Factor 
Receptor (EGFR) phosphorylation/activation and these activities are 
CatSper-dependent [46]. It was shown that Zn2+ is incorporated into 
sperm ODF extending from the connecting piece of the tail, causing 
softening of its consistency leading to the development of HAM [61]. 
In contradiction to the high seminal fluid [Zn2+] (~2mM) which inhib-
its Hv1, lower concentrations in the micromolar range promote acro-
somal reaction in sea urchin [44] and bovine [45] sperm. In sea urchin 
sperm micromolar Zn2+ activates changes in membrane potential, in-
duce elevation of pHi,[Ca2+] iand cAMP and activate K+-channel [62].

	 Also, we found that 5-10µM Zn2+ stimulates hyperactivated motil-
ity in human sperm incubated under capacitation conditions, whereas 
at 30µM Zn2+ there is no stimulation [46]. These data clearly show 
that the relatively high [Zn2+] in the semen are inhibitory to sperm 
functions, whereas in the female reproductive tract [Zn2+] is much 
lower (1.0-1.5µM) [63] allowing the occurrence of sperm capacita-
tion/hyperactivated motility and the acrosome reaction leading to fer-
tilization. It has been proposed [64] that Zona Pellucid (ZP) protein-
ases implicated in endowing the acrosome reacted spermatozoon with 
the ability to penetrate the ZP, are negatively regulated by Zn2+. It has 
been shown that sperm can induce Zn2+ release from the oocyte cortex 
[65,66] leading to proteinases inhibition and as a result sperm that are 
still bound to the ZP became de-capacitated, and polyspermy is pre-
vented. It was also suggested that Zn2+ inhibits sperm chemoattraction 
to the egg induced by oocyte-secreted progesterone in human, mouse 
and rabbit sperm [67]. Addition of Zn2+ (~0.1mM) to bovine IVF me-
dium inhibits fertilization rate [68]. Also, blockers of Zn-dependent 
metalloproteases inhibit sperm passage via the cumulus ooporus in 
porcine IVF [69].

	 Appropriate concentration of zinc, in the micromolar range, seems 
to increase in vitro capacitation efficiency [45,46] by activating sev-
eral proteins during this process, including the tyrosine kinase Src, 
EGFR transactivation and Phosphatidylinositol-3-Kinase (PI3K) 
[45,70-73] leading to Ca2+ mobilization and acrosome reaction. In a 
recent study, we suggested the following mechanism that regulates 
human HAM: Zn2+ stimulates HAM via CatSper-dependent activa-
tion of the Adenylyl-Cyclase (AC)/cAMP/PKA/Src/EGFR and Phos-
pholipase C (PLC) cascade [46]. In bovine sperm, we show that Zn2+ 
activates the EGFR during capacitation which is mediated by activa-
tion of tmAC, PKA and Src [45]. The addition of Zn2+ to capacitated 
bovine sperm further stimulates EGFR and the down-stream effectors 
PI3K, phospholipase C and protein-kinase C leading to acrosomal 
exocytosis [45].

Zinc in Assisted Reproductive Techniques 
	 Over the past decade, the efficiency of assisted reproductive tech-
niques has been improved. The cryopreservation of sperm using liq-
uid nitrogen is now usually used in assisted reproduction centers and  
laboratories as a procedure to preserve sperm cells. However, freezing 
and thawing processes, cause a decrease of the fertilizing sperm effi-
ciency due to various stress and cryoprotectant toxicity. The sperm is 
deprived of the seminal plasma protective effects; many antioxidants 
are stored in human seminal plasma such as vitamin c and e, super-
oxide dismutase, glutathione and thioredoxin that act directly against 
free radicals [74,75]. It is well known today that osmotic effects 
and oxidative stress of cryopreservation affect sperm cells in many 
ways: by diminishing fertilization capacity, motility, morphology 
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(such as coiled tails), viability of spermatozoa [76] damaging cells 
membrane [77] causing DNA fragmentation [78,79] and loss of 
mitochondrial function [80]. The improvement of fertility capaci-
ty by certain antioxidants has been more and more used in assisted 
reproduction techniques [81,82]. The addition of zinc to the culture 
medium was reported to protect the human spermatozoa from oxi-
dative damage [83]. Studies revealed that after incubation with H202 
the DNA fragmentation percentage in spermatozoa was increased (in 
comparison to control), effect that was reversed by zinc supplementa-
tion to the medium [83].

	 Recent researches brought to light the beneficial effects of zinc ad-
dition to human ejaculate before cryopreservation on sperm viability 
and motility after thawing [83,84]. Freezing of human sperm in the 
presence of 50µM zinc revealed after thawing a 26%-184% increase 
in the number of motile sperm and a 130 % increase in the percentage 
of progressive motility [84]. Similar effects were observed in semen 
samples cryopreserved with Zinc Oxide Nanoparticles (ZnONPs) 
after thawing and followed by an incubation of 24h [85]. Moreover 
when cells were frozen, thawed and refrozen in a second time in the 
presence of zinc a considerable increase in motility was observed 
[84]. These significant improvements in sperm motility, when zinc 
was supplemented to cryopreservation media can be associated with 
the ion effects on microfilament in the outer dense fiber [86], leading 
to an increase in sperm mobility percentage [87]. Moreover, zinc has 
been reported to preserve genomic integrity [88], chromosomal sta-
bility [89,90], and protect sperm membrane [91,92] preserving in that 
way cell morphology during cryopreservation.

	 Utilization of ZnONPs, used basically as drug delivery for cancer 
research [93], was applied to study sperm preservation cells during 
cryopreservation. The ZnONPs seemed to provide beneficial effects 
by avoiding DNA damages and by stabilizing sperm chromatin [85]. 
These protecting effects were reported to be linked to the creation of 
a protective layer of ZnONPs around the sperm cell preventing lipid 
peroxidation at the membrane [85]. Considerable IVF cases rise from 
male-factor deficiencies. The quality of sperm after cryopreservation 
is an essential factor in the success of assisted reproduction proce-
dures. Zinc can be considerate as a good player to this issue (Figure 
1).

	 Zn2+ binds and activates GPR39 which activates the tmAC to ca-
talyse cAMP production. NHE (Na+/H+-exchanger) is activated by 
cAMP leading in increase pHi and activation of CatSper resulting in 
an increase in [Ca2+] i which together with HCO3

- activates sAC. The 
increase in [cAMP] i causes PKA-activation following by activation 
of the cascade Src-EGFR-PLC resulting in IP3 production which mo-
bilizes Ca2+ from the acrosome causing further increase in [Ca2+] i 
and the development of hyper-activated motility. PKA also activates 
PLD leading to F-actin formation during capacitation. Prior to the AE, 
Ca2+ activates the actin severing protein gelsolin resulting in F-actin 
depolymerization and Acrosomal Exocytosis (AE).
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