
Introduction
 Endometriosis is a complex hormonal and immunological dis-
ease affecting girls and women during their reproductive years [1,2]. 
Characterised by the presence of lesions, histologically similar to  
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the glands, stroma of endometrium and outside the uterus [3,4]. It 
has been estimated that 5-15% of women in their reproductive years 
within the general population suffer from endometriosis [1,4,5]. The 
reported prevalence among women presenting for investigations of 
pelvic pain (such as dysmenorrhoea) is as high as 50% and in women 
with infertility it is estimated to be 40-50% [1,6]. Although the ma-
jority of women with endometriosis are of child-bearing age, reports 
have also described infrequent endometriosis in pre-menarchal girls 
and postmenopausal women [5,7].

 Currently, the ‘gold-standard’ for the diagnosis of endometriosis 
is laparoscopy by an experienced gynaecological endoscopist [2,8]. 
The clinical diagnosis of endometriosis is made by the visual con-
formation of endometriotic lesions within the pelvis with or without 
prior histological confirmation. Ideally, histological confirmation to 
support the clinical diagnosis by biopsy of the ectopic endometriot-
ic lesions is preferable, especially in circumstances of uncertainty in 
observation of non-pigmented lesions on serosal surfaces of pelvic 
organs [9].

Immune System Role in Pain Generation
 The immune system consists of a network of cells and molecules 
that work together to provide a response to pathogens [10]. They also 
provide a defence mechanism and maintain homeostasis and the gen-
eral wellbeing of the organism [11]. The immune response can be 
facilitated through innate and adaptive immune components. An in-
nate immune response can be considered as the early line of defence 
to invading pathogens. On the other hand, an adaptive immune re-
sponse is more specific to a specific pathogen and also has the ability 
to preserve memory of such pathogenic constituents [12]. Immune 
responses are facilitated mainly through immune cell populations 
(leukocytes) and through mediators that are synthesized and secreted 
by these cells [13].

Interaction between the immune system and nervous system

 Neuroimmune interactions play a critical role both in the initiation 
and proliferation of peripheral inflammation [14]. The nervous sys-
tem influences the immune system through hormonal and neuronal 
pathways. The hormonal pathway mainly involves the Hypothalam-
ic-Pituitary-Adrenal Axis (HPAA) and Hypothalamic-Pituitary-Go-
nadal axis (HPGA) [15,16]. Glucocorticoids are the end products of 
HPAA and cause suppression of the immune system. End products 
of HPGA pathway are estrogens in females and androgens in males. 
Estrogens prompt and androgens suppress immune responses. Ex-
perimental studies have shown that suppression of different types of 
immune cells can reduce the chronic pain [17]. Therefore, the prev-
alence of inflammatory, chronic pain and autoimmune disorders are 
higher in females [18,19].

 The neuronal pathway involves the nerves ability to influence 
the immune system through autonomous nervous system. Catechol-
amines, which are neurotransmitters, cause anti-inflammatory effect 
through the promotion of Th2 immune response. In addition, the exis-
tence of Beta-2 adrenergic receptor on lymphocytes further validates 
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Abstract
 Endometriosis is a benign, oestrogen dependant gynaecological 
disorder defined by the growth of endometrial-like tissue resembling 
the endometrium in sites outside the uterus often causing pain and 
Infertility. The prevalence of endometriosis is 10-15% of women of 
reproductive age and up to 47% of infertile women. Although the 
majority of affected women are of reproductive age, however, it has 
also been documented in pre-menarchal girls and post-menopausal 
women and in adolescents. Endometriosis is an inflammatory dis-
order, with signs of increased leukocyte recruitment and activation 
within, and in close vicinity to endometriotic lesions. The complex 
interactions of the immune system appear to be lightly regulated 
during the normal menstrual cycle and variations to these cyclical 
patterns at local and systemic levels are likely to be involved in 
pathological states such as endometriosis.
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this direct interaction [20]. Other evidence is the inhibitory effect of 
the parasympathetic system and acetylcholine through nicotinic re-
ceptors on macrophage production of pro-inflammatory cytokines 
[21]. Therefore, pain and inflammation can interact with each other 
in complex and multi-dimensional ways which are associated with 
multiple outcomes and lead to an array of ‘difficult to manage’ pa-
thologies [14].

Peripheral nociceptor sensitization during inflammation

 Reports in the literature are that neurons are not the only element 
that plays a role in the formation and maintenance of most clinical 
pain states [22]. The immune system comes into action in most cas-
es of chronic pain [17]. In inflammatory responses, the circulation 
and local leukocytes produce proalgesic mediators that prompt the 
pain through the stimulation of specific afferent nerve ending called 
nociceptors [23]. Nociceptors are found on unmyelinated A and C fi-
bers which transduce and propagate noxious stimuli to the brain. With 
several neurotransmitters modulating these signals at the level of the 
spinal cord and at supraspinal sites and together with environmental 
and cognitive factors sensation of pain occur [23].

Neurotrophins and immune system

 The possibility of interaction between neurotrophins and lympho-
cytes was first stated by Dean et al., who observed that the blastogen-
ic response of mouse spleen cells was increased by Nerve Growth 
Factor (NGF) [24]. This observation has been followed by several 
other studies that validated each lymphocyte subset produced and 
expressed different neurotrophins and their receptors [25-27]. As for 
neurotrophin production, these studies have revealed that B cells pro-
duce NGF and NT-3 [25,26,28]. Activated T and B cells also produce 
Brain-Derived Neurotrophic Factor (BDNF) [29]. In addition, it was 
suggested that NGF is involved in the survival of B-cell as it has the 
ability to rescue these cells from stimulated apoptosis [30]. These 
studies led to the suggestion that there might be autocrine and para-
crine activities of neurotrophins and their receptors on immune cells 
[31].

Neuronal guidance molecules and immune system

 Neuronal guidance molecules have gained much interest in the 
field of immunology and there is an increased focus on the Sema-
phorin family and their respecters Plxins. Although only a limited 
number of family members have been comprehensively investigated, 
they actively contribute to different aspects of the immune system 
activities [32]. Studies of Semaphorin and Plxins have indicated that 
some members of these families play crucial roles in immune cell 
interactions, which in return impact the immune response [33]. In 
addition, the discovery that lymphocytes expressing semaphorins is 
a significant breakthrough, as it suggests the involvement of these 
molecules in both the nervous system and immune system [34]. The 
current knowledge about these molecules is summarized in (Table 1).

Endometriosis and Immune System
 Research into immune system changes in endometriosis has main-
ly been on local changes in immune cell expression and activity within 
the peritoneal cavity and ectopic endometriotic lesions [35-37]. Only 
a few studies have explored the immunological changes at the uterine 
level [38-41]. These studies have suggested that the immune system 
plays a crucial role in both the initiation and development of the [42-
45]. More specifically, immune cells like T and B lymphocytes and 
natural killer cells appear to play essential roles in determining either  

acceptance or rejection survival, implantation, proliferation of endo-
metrial and endometriotic cells [46,47].

Altered leukocytes in eutopic endometrium of women 
with endometriosis

 Evidence suggests that there were alterations in the activity and 
the number of uterine T-lymphocytes in women with endometriosis 
in comparison to women without the disease. A study by Mettler et 
al., showed a reduction in CD3+ T-cells, during the early proliferative 
phase in the eutopic endometrium of women with endometriosis [48]. 
This diminution could be caused by the migration and localization of 
T-cells at the site of ectopic disease [49,50]. Moreover, the number 
of total T lymphocytes as well as that of activated T lymphocytes 
was shown to have decreased in eutopic endometrium compared to 
ectopic endometrium [51,52]. However, a study by Fernandez-Shaw 
et al., failed to show any difference in the number of T-cells in the 
endometrium from women with endometriosis compared to women 
without the disease [53]. On the other hand, studies have demonstrat-
ed significant increases in the number of CD4+ T helper cells, express-
ing IL-2 and γδT cells in eutopic endometrium compared to ectopic 
endometrium [54,55].

 B-lymphocyte populations have illustrated alterations in women 
with endometriosis. The mean density of endometrial B-cells (CD20+) 
was higher in women with endometriosis compared to women with-
out the disease. On the other hand, numbers of activated B-lym-
phocytes (CD20+ and HLA-DR+) and B-1 cells (CD5+ and CD20+) 
showed no difference between the two groups [54]. These findings 
have indicated that there are functional alterations in the activation 
of B-lymphocytes which modify antigen response and dysregulation 
of the immune response in women with endometriosis [56]. Previous 
studies showed no differences between endometrial NK cells in wom-
en with and without the disease [51,53,57,58]. However, studies have 
indicated that eutopic endometrial cells of women with endometriosis 
release increased levels of Natural Killer (NK) inhibitory substances 
and shown a reduction in endometrial NK cells cytotoxicity [56,58-
61]. This in return prompts the ability of endometrial cells to survive 
and implant at ectopic sites [62].

Altered circulating leukocytes of women with endometri-
osis

 In addition to local immunological alterations within the eutopic 
endometrium, there are immunological changes present in the pe-
ripheral blood of these women. T-lymphocyte numbers in circulating 
peripheral blood in women with endometriosis have shown contradic-
tory results. Whilst, some studies have demonstrated no differences 
in the levels of peripheral CD3+, CD4+ and CD8+ T-lymphocytes in 
women with endometriosis [63,64]. Another study has reported that 
the total number of CD3+ T-lymphocytes was reduced in the circulat-
ing peripheral blood of women with endometriosis [65]. Wu et al., 
also looked at the T-lymphocytes activity though the investigation of 
CD3+/CD69+ and CD3+/CD25+ lymphocytes [65]. Whilst, CD69 on 
T-lymphocytes are associated with a higher production of inflamma-
tory mediators TNFα and IL-2, CD25 expression is associated with 
protecting T-lymphocytes against apoptosis [66-68]. The study has 
shown a decrease in the numbers of T-lymphocytes expressing these 
antigens. The result is suggestive of changes in the systemic activity 
and an increased sensitivity of T-cells to apoptosis in women with 
endometriosis. In addition, there is also a contradiction to their re-
sults in the ratio of helper T-lymphocytes which simulate the immune 
response to suppressor T-lymphocytes, which in turn reduces the 
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immune response. Whilst one study has illustrated a higher ratio of 
helper T-lymphocytes to suppressor T-lymphocytes in the circulating 
blood of women with endometriosis compared to women without the 
disease, another investigation into the expression of these peripheral 
lymphocytes has failed to demonstrate any difference in the ratios of 
the circulating peripheral blood of women with early- or late-stage 
endometriosis [69,70]. High helper T-cells in relation to suppressor 
T-cells maybe indicative of a higher stimulation of immunological 
responses in endometriosis, with a reduction in the suppression of the 
immune system. This is suggestive of a dysfunction in the immune 
response in women with endometriosis and a possible link between 
endometriosis and autoimmune disease [71-74]. 

 There is also controversy regarding the numbers of B-lympho-
cytes in the circulating peripheral blood of women with endometri-
osis. Studies have revealed both higher and lower numbers of CD20+ 
B-lymphocytes in circulating peripheral blood of women with endo-
metriosis compared to women without the disease [64,69]. Moreover, 
other studies have reported no differences in the numbers of CD20+ 
B-lymphocytes in circulating peripheral blood of women with endo-
metriosis compared to women without the disease [70]. In regards to 
B-lymphocytes activity, a study examined the expression of CD20+, 
CD20+/CD5+ and CD20+/HLA-DR+ B-lymphocytes in women with 
endometriosis [70]. CD5 being involved in antigen recognition and 
HLA-DR involved in antigen presentation. This study has indicated 
that there are no differences in the ability of peripheral B-cells to rec-
ognize and present antigens in women with and without endometrio-
sis [54,75-79].

 Studies have demonstrated no differences in the numbers of NK-
cells in circulating peripheral blood in women with and without en-
dometriosis [64,80,81]. On the other hand, other studies have found 
higher and lower circulating NK cell numbers in women with endo-
metriosis compared to women without the disease [82-84]. The activ-
ity of circulating NK cells has been shown to be reduced in women 
with endometriosis. Tanaka et al., reported in a cell-culture, that NK-
cell activity was reduced in a dose-dependent manner when cells were 
exposed to blood sera of women with endometriosis [85]. In addition, 
NK-cell cytotoxicity was reduced in severe endometriosis, which 
suggested the association of reduced activity of peripheral NK cells 
in women with endometriosis with the severity of the disease [86]. It 
is important to mention that there was a significant reduction in the 
ability of overall circulating lymphocytes to proliferate and initiate 
cytotoxic activity against autologous and heterologous endometrium 
in vitro in endometriosis [87]. This result suggests that the ability of 
peripheral blood lymphocytes to initiate successful immunological 
response against endometrial cells in culture is considered to be a 
reflection of the lymphocytes inability to target displaced endometrial 
fragments in endometriosis.

Interaction between the immune system and nervous sys-
tem in women with endometriosis

 As previously described, the complex interactions between the im-
mune and nervous systems are important factors in the initiation and 
maintenance of chronic pain [17,22]. Previous studies have investi-
gated the possible role of macrophages in maintenance and growth of 
nerve fibres in peritoneal endometriotic lesions. These studies demon-
strated that Vascular Endothelial Growth Factor (VEGF), produced 
by macrophages, can act as a neurotrophic factor maintaining and 
stimulating the growth of nerve fibres and VEGF was higher in the PF 
from women with endometriosis in comparison to women without the 
disease [88,89]. However, the role of lymphocytes in pain generation 
has never been investigated and the role of the immune system in pain 
generation in endometriosis remains poorly understood.
 

Reactive Oxygen Species an Oxidative Stress Role 
in Pain
Reactive oxygen species an oxidative stress

 Oxidative stress is defined as the imbalance between the produc-
tion of reactive species, including Reactive Oxygen Species (ROS), 
Reactive Nitrogen Species (RNS), and the system’s ability to neu-
tralize and eliminate them [90-93]. ROS are by-products of Aerobic 
metabolism and include Superoxide anion (O2

–), Hydrogen peroxide 
(H2O2) and Hydroxyl radicals (OH) [94]. ROS have the ability to react 
and oxidize any molecule they come in contact with and cause mod-
ification such as functional alterations and impair cellular processes. 
These modifications are dependent on the tissue concentration they 
can either exert beneficial physiologic effects or pathological damage 
to cellular components, including lipids, proteins and nucleic acids 
[95,96]. 

Reactive oxygen species and regulation of inflam-
mation and pain
 ROS generated by mitochondria are important in normal in-
nate and adaptive immunity through the activation of immune cells 
[97,98]. However, increased levels of ROS within immune cells 
can lead to hyperactivation of these cells and induce inflammatory 
responses, resulting in tissue damage and pathology [99,100]. High 
level ROS can induce pain indirectly through oxidative stress-asso-
ciated inflammation, which is a key component of pain [101-104]. 
In addition, ROS induces pain directly through sensitizing the noci-
ceptive neurons including myelinated Aδfibers or non-myelinated C 
fibers that transmit the signals to cerebral sensory cortex and perceive 
as feeling of pain [104-106].

Reactive oxygen species 

Mitochondria

 Mitochondria are the primary source of ROS, which generate 
through Oxidative Phosphorylation (OXPHOS) as a by-product of 
ATP synthesis [107]. The OXPHOS system consists of around 90 
proteins with a dual genetic origin. The subunits are either encoded 
by nuclear genes or encoded by mtDNA [108]. ROS generation in 
mitochondria is regulated by a number of factors, including oxygen 
concentration, efficiency of Electron Transport Chain (ETC), avail-
ability of electron donors including NADH and FADH2, activity of 
Uncoupling Proteins (UCPs) and cytokines [109-111]. In addition, for 
being a main source of ROS production, mitochondria are also af-
fected by severe and prolonged oxidative stress [110,112]. In normal 
state, there is a network of mitochondrial antioxidant systems that 
protect the mitochondria from oxidative damage [113]. This network 
includes superoxide dismutase, catalase, glutathione peroxidase and 
glutathione reductase and also a number of low molecular weight 
antioxidants including α-tocopherol and ubiquinol [114]. However, 
these antioxidant systems are not perfect [115]. Hydrogen peroxide 
produced by superoxide dismutase is relatively unreactive, but in the 
presence of ferrous ion, it can form high reactive hydroxyl radicals 
through Fenton chemistry. These radicals can induce lipid peroxida-
tion in mitochondrial membranes [113,116]. Accumulative oxidative 
damages to mitochondria, caused by endogenous metabolic processes 
and/or exogenous oxidative influences, cause mitochondria to pro-
gressively become less efficient. As mitochondria progressively lose 
their functional integrity, ever-greater proportions of oxygen mole-
cules reaching them are converted to ROS [117].
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Mitochondrial DNA
 Mitochondria have their own double-stranded DNA molecule of 
16.6 kb and encode 11 messenger RNAs (mRNAs), which is translat-
ed to 13 proteins, 2 ribosomal RNAs (rRNAs) and 22 tRNAs [108]. 
The Displacement Loop (D-loop) is the only noncoding region of 
the mitochondrial genome and mutations at a higher frequency and 
is accumulated in this region more than any other region [118]. It is 
a hot spot for mtDNA alterations and contains two hypervariable re-
gions. The D-loop includes important components for replication and 
transcription of mtDNA which may alert the overall mitochondrial 
function and cellular ROS generation [119]. Mitochondrial DNA is 
transmitted exclusively through the female germ line [120].

 A number of mutations have accumulated in the mtDNA during 
evolution to facilitate adaption to the different global environments 
[121]. According to these mutations, human populations have been 
divided into a number of discrete, region specific, mitochondrial hap-
logroups [107]. MtDNA haplogroups are defined as patterns of specif-
ic Single Nucleotide Polymorphisms (SNPs) scattered throughout the 
mitochondrial genome, that tend to occur together within individuals 
and could cause functional changes and alert rates of replication and 
transcription of the mtDNA [107,122]. In populations of European 
ancestry, which most studies have focused on, nine such haplogroups 
with frequencies of at least 1% have been described which include 
mtDNA haplogroups H, I, J, K, T, U, V and W [122,123]. In addition, 
Africans are characterized by super haplogroup L, whilst, Asian are 
characterized by haplogroup M [123,124]. It has been proposed that 
different mtDNA haplogroups could influence OXPHOS capacity and 
the production of ROS, which are signalling elements for pathways, 
can affect cellular behaviours [122,125,126]. 

 Given that mitochondria are involved in ROS formation, and en-
ergy production required for the activation and proliferation of pe-
ripheral lymphocytes, it has been suggested that mtDNA variants are 
involved in the pathogenesis of endometriosis [90]. Kao et al., identi-
fied novel 5335 bp deletion of mtDNA in endometriotic tissue [127]. 
A study of women with endometriosis from a South Indian popula-
tion revealed somatic and germline mtDNA variations in endometrial 

tissue, suggesting a strong association between mtDNA variations and 
endometriosis risk [128]. This study was also the first to investigate 
the association of haplogroups with endometriosis risk and revealed 
a strong association between haplogroup M5 and endometriosis risk 
in a South Indian population. Another study on South Indian women 
with endometriosis investigated the association between D-loop al-
ternations with endometriosis, this was suggestive that mitochondrial 
D-loop alterations could be an inheritable risk factor for endometrio-
sis [129]. All previous studies have suggested a possible association 
between mtDNA and endometriosis, although further investigations 
are required for a clearer understanding of inheritable mtDNA role in 
endometriosis.

Oxidative stress and endometriosis

 Oxidative stress has been involved in endometriosis and develops 
when there is an imbalance between the ROS and RNS production 
and scavenging capacity of antioxidants in the reproductive tract 
[130]. Endometrial tissue of women with endometriosis has shown 
a higher endogenous oxidative stress with increased ROS generation 
and alterations in ROS detoxification mechanisms [131]. It’s been 
suggested that the peritoneal protective mechanisms in women with 
endometriosis might be defective by menstrual reflux. The peritoneal 
fluid of women with endometriosis has been shown to have increased 
ROS generation by activated peritoneal macrophages [132]. In ad-
dition, women with endometriosis showed a higher iron expression, 
which can act as a catalyst of free radicals’ generation and contribute 
to oxidative stress, in the peritoneal cavity including peritoneal flu-
id, ectopic endometrial tissue and peritoneum adjacent to lesions and 
macrophages as a result of lysis of pelvic red blood cells [130,133]. 
Yamaguchi et al., reported that high free iron in the contents of en-
dometriotic cysts was found to be strongly associated with oxidative 
stress and frequent DNA mutations [134]. As a result, the iron-rich 
environment may impair the functionality of immune cells, thereby 
contributing to the development of the disease. In addition, Ota et 
al., revealed that there were high expressions of xanthine oxidase, an 
enzyme producing ROS, in the endometrium of women with endo-
metriosis throughout the cycle compared to women without endome-
triosis [135]. This study also indicated that the expression enzymes 

Plexin/semaphorin Expression Binding partner Activities

Plexin-A1 DCs, plasmacytoid DCs Semaphorin-6D, Semaphorin-3E DC activation, movement and lymph node trafficking

Plexin-A4 T cells, DCs, Macrophages Class 6 Semaphorins Inhibition of T cell activation
Enhancing TLR signaling

Plexin-B1 Semaphorin-4D

Plexin-B2 GCB cells, macrophages Semaphorin-4A
Semaphorin-4D Marks Germinal Centers, controls macrophage movement, T cell activation

Plexin-D1 Double positive thymocytes,
Activated B cells Semaphorin-4A and -3E Thymocyte trafficking

Germinal Center B cell development

Semaphorin-3A T cells Plexin-A family Inhibits T-cell activation and monocyte migration,
DC movement

Semaphorin-3E Thymic epithelial cells Plexin D1 Double positive thymocyte migration and movement, T cell development

Semaphorin-4A DCs, activated T cells, Th1 
cells Plexin-D1, Plexin-B2, Tim-2 T-cell activation and monocyte migration

Semaphorin-4D T cells, activated B cells, DCs CD72 B-cell activation and homeostasis, DC activation, mast cell responses

Semaphorin-6D T cells, B cells, NK cells Plexin-A1 DC activation and production of type1 interferon, late-phase T cell prolif-
eration

Semaphorin-7A Activated T cells Integrin α1β1 Monocyte/macrophage activation

Table 1: Expression and activities of plexin and semaphorin family members in the immune system [33].
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associated with free radicals were expressed in the glandular epitheli-
um of endometrium, at levels which were noticeable in endometriosis 
[135]. Moreover, the expression of 8-hydroxy 1-deoxyguanosine, an 
oxidative stress marker and lipid peroxide were 6-fold higher com-
pared with normal endometrial tissue [136]. These findings were in-
dicative of the abnormal metabolic activity of free radicals in women 
with endometriosis [130]. However, the role of oxidative stress and 
ROS in pain generation in women with endometriosis is still poorly 
understood. 

Conclusion
 An improved understanding of the immune system and its rela-
tionship between innervation and clinical characteristics may eluci-
date aspects of pain mechanisms in endometriosis and facilitate the 
development of novel therapeutic approaches.
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