
	 Chronic Kidney Disease (CKD) is estimated to affect over 13% of 
US adults and is increasing in prevalence [1]. Most CKD cases are 
caused by glomerular diseases with progressive glomerulosclerosis  
lesions (www.usrds.org). In the last two decades podocytes have 
been intensely and productively investigated as central culprit in the  
evolution of segmental sclerosis lesions [2]. Thus, the ‘podocyte  
depletion paradigm’ places a critical role on irreversible loss of  
replication-deficient podocyte in the initiation of segmental sclerosis 
lesions and proteinuria [3]. Interestingly, the role of endothelial injury  
in glomerular disease remains relatively unexplored until recently  
[4-6], mainly because of the technical difficulties in isolating  
glomerular endothelial cells due to cell heterogeneity, lack of specific 
markers to identify organ specific endothelial cells, and challenges in 
maintaining long-term cultures.

	 Endothelial cell function is essential for maintenance of vascular 
homeostasis by releasing a variety of autocrine and paracrine factors 
that act locally to maintain vascular tone. On the other hand, nearly 
all vascular diseases arise from endothelial dysfunction. Glomerular 
endothelial cells are highly specialized with fenestrae and a luminal 
glycocalyx layer [5,7,8], which contributes to the filtration barrier 
[4,9]. Recent studies have demonstrated that the absence (knockout)  
of endothelial Nitric Oxide Synthatase (eNOS) exacerbates renal  
injury and accelerates diabetic kidney damage [10,11]. In models of 
glomerulosclerosis, endothelial dysfunction has been recognized by 
our group and other groups to play a critical role in the development 
and progression of glomerular disease [12-14]. The role of endothelial  
cells in fibrosis is also gaining traction due to recent suggestion of  
Endothelial to Mesechymal Transition (EndoMT) and its contribution 
to fibrosis [15-17] further supporting a pivotal role for endothelial cell 
signaling and injury in renal fibrosis.

	 Although our current understanding of endothelial mediated 
events in kidney disease development and progression is still growing, 
endothelial dysfunction by mitochondrial oxidative stress, endothelial  
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senescence, and nitric oxide reduction have emerged as a key  
pathogenic mechanism in kidney injury associated with diabetes,  
hypertension, obesity, dyslipidemia, and ageing [18,19]. Work in 
our laboratory has put forward a new working model for segmental  
sclerosis and propose endothelial cells to be key players in the  
progression of glomerular disease. We showed that perturbation 
of podocyte homeostasis (e.g., TGF-β, Adriamycin or microRNA  
dysregulation) can initiate mitochondrial oxidative stress and  
dysfunction in adjacent endothelial cells (via Edn1/Ednra). In  
response, dysfunctional endothelial cells feedback by mediating  
progressive damage and depletion of adjacent “activated” podocytes  
(via release of soluble factors) characteristic of progressive  
segmental sclerosis [12,20]. The exact mechanisms of how endothelial 
cells influence podocytes are currently subject of ongoing investiga-
tion. Moreover in diabetic kidney disease, were microvascular damage 
is a key event in diabetes-associated organ malfunction, glomerular  
endothelial cell injury may also contribute to early diabetic  
nephropathy as suggested by the increase of plasma von Willebrand 
factor observed in diabetic patients [21]. A reduced number of  
glomerular endothelial fenestrations in both type 1 and 2 diabetic 
patients has been also documented [22,23], and contrast to changes 
in podocyte morphology, endothelial abnormalities were found to 
be more closely associated with increasing urine albumin excretion. 
The endothelial surface layer (glycocalix and endothelial cell coat),  
provides an important barrier to protein permeability and studies have 
demonstrated a severe reduction of the endothelial glycocalyx in type 
2 diabetic patients and in animal models [24,25]. Hence studies from 
structural, molecular and functional viewpoints now demonstrate 
that endothelial cell function plays a critical role in the susceptibility 
and pathogenesis of progressive diabetic nephropathy, and challenge  
the notion that podocyte injury and loss is the primary event in  
nephropathy as recently suggested [26,27].

	 A vast amount of research has been devoted to understanding the 
mechanisms and pathogenesis of glomerular and tubular disease from 
the epithelial cell point of view, and unfortunately this knowledge has 
not led to new effective treatments. Intriguingly, RAS blockade has 
been firmly established as the ‘renoprotective’ intervention of choice 
to reduce proteinuria and retard progression of CKD [28]. However, 
despite the widespread clinical use of RAS blockade, the prevalence 
of advanced stages of CKD continues to increase [29]. Hence, new  
therapies aimed at preventing progression of CKD constitute a hugely  
important unmet need. There is now and increased interest and  
potential shift in focus to explore the role of the endothelium in  
kidney disease as a potential key player in development and  
progression of the disease. Given that endothelial cells may influence 
disease progression, one could consider the possibility that drugs  
targeted at preventing endothelial dysfunction could be useful in  
preventing renal damage. However as we learned from recent efforts, 
focusing on individual cells as responsible for entire organ damage  
may be counterproductive. More information is warranted to  
understand the relationships and crosstalk between the glomerular  
endothelium, epithelium, mesangium, parietal epithelial cell and  
fibroblasts while acknowledging that kidney damage can be  
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influenced by changes in blood pressure, hyperglycemia as well as 
consideration to other factors such as race, socioeconomic status,  
obesity, dyslipidemia and other unknown factors.

	 Finally, as investigators we could consider employing new  
paradigms where we recognize that the “sum of the contributions of 
each cell type” as part of an integrated functional yet complex system 
[30]. These efforts will stimulate discoveries and novel approaches for 
intervention.
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