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Introduction
	 Acute or chronic renal ischemia (impaired blood flow) 
accompanies a number of conditions or events including: surgery, 
trauma, atherosclerosis, hypertension, idiopathic Renal Artery 
Stenosis (RAS), and general aging. RAS is the most common cause 
of End-Stage Renal Disease (ESRD) in elderly patients. It has been 
reported at an incidence of 18% in subjects 64-74 years of age, on 
autopsy, and 42% in those above the age of 75 [1]. Atherosclerosis 
accounts for 90% of the lesions that obstruct blood flow to the renal 
arteries resulting in stenosis. Moreover, renal artery stenosis increases 
the risk for adverse cardiovascular outcomes nearly 2-fold [2]. Specific 
polymorphisms in Apolipoprotein E (ApoE) have been associated 
with increased prevalence of RAS in human subjects [3]. RAS, as 
well as other forms of renal ischemia, can result in irreversible renal 
damage and sometimes ESRD. 

	 It has been known for some time that 17β-estradiol (E2) provides 
protection in young females against progression and severity of a 
number of vascular disorders including ischemia-associated renal 
pathology [4]. However, with the advent of menopause, circulating 
levels of ovarian steroids rapidly decline. In parallel, the rate of 
Cardiovascular Disease (CVD) increases to the point where it 
is the leading cause of death in women over 50 [5]. While simple 
replacement of these missing steroids would seem a plausible answer, 
large, randomized prospective trials conducted over 2 decades 
ago, such as the Women’s Health Initiative (WHI) have shown that 
Hormone Replacement Therapy (HRT) using common estrogenic 
formulations were not only “non-protective”, but actually increased 
the risk for CVD [6,7]. As a result of the short-comings that surfaced 
from these early studies, it became apparent that the actions and 
metabolism of ovarian steroids over the lifespan are quite complex 
and in imminent need of further study. 

	 Therefore, in spite of intense research on mechanisms 
underlying renal-ischemia- associated pathology, treatments remain 
unsatisfactory. Acutely, arterial blockage can often be reversed 
by balloon angioplasty and/or stent implantation; however, these 
procedures often result in vessel restenosis [8]. The interplay of 
growth factors, lipids, and oxidative factors are implicated in both 
atherosclerosis and restenosis. E2 has the potential to be protective 
against pathology associated with these disorders, but further study is 
warranted. 
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Abstract
	 Renal ischemia can lead to irreversible damage to the kidney 
including atrophy and fibrosis. Young females generally experience 
attenuated pathology due to the protective actions of ovarian 
steroids, in particular 17β-Estradiol (E2); however, the mechanisms 
of action remain murky. We evaluated the effects of E2 on pathology 
associated with renal ischemic injury in atherosclerosis-prone 
apolipoprotein E knockout mice. Seven groups of mice (n=6/group) 
were studied for 60 days: 1) Ovariectomized (OVX) female with 
Left Renal Artery incomplete ligation (RAL) and subcutaneously 
implanted placebo pellets; 2) OVX-RAL females with E2 pellets; 3) 
intact females with RAL; 4) intact males with RAL; 5) intact females 
with sham-RAL surgeries; 6) intact males with sham surgeries; and 
7) OVX females with sham surgeries. E2 replacement substantially 
reduced renal atrophy of the ligated kidney (by over 50%). Western 
blotting revealed that E2 attenuated the reduction in Aquaporin-2 
(AQP2), the bumetanide-sensitive Na-K-2Cl cotransporter 
(NKCC2), and the sodium phosphate cotransporter (NaPi-2) in the 
ischemic kidney; and further increased AQP2 and NaPi-2 in the 
contralateral kidney. E2 also increased transforming-growth-factor 
β1 (TGFβ1) in both kidneys, and reduced the degree of fibrosis. 
Assessment of metabolic parameters revealed a strong trend for 

reduction in circulating insulin (18%) and triglycerides (46%) with 
E2 replacement; however, plasma and renal interleukin-6 were 
increased. Overall E2 replacement attenuated atrophy and fibrosis 
associated with renal ischemia and preserved transporter/channel 
profile, despite increased TGF-β1 and IL-6. These findings are 
relevant to menopause or in other states of low estrogen coupled to 
renal ischemia.
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	 For example, while several studies suggest that E2 is anti-
inflammatory; other studies find activation of growth-related 
pathways including TGFβ1 [9]. E2 also has an unclear relationship 
with interleukin-6 (IL-6), a major marker of vascular inflammation. In 
one study, oral conjugated estrogen (Premarin) led to a 48% increase 
in circulating IL-6 [10]. On the other hand, in another study, serum E2 
and IL-6 were negatively correlated in women during the menopausal 
transition [11]. Spleen and plasma IL-6 concentrations were higher in 
BALB-/c female mice (versus male mice), reduced by ovariectomy, 
and associated with the severity of hepatitis [12]. It is likely that some 
of these differential effects of E2 on interleukin-6 are dose and host 
dependent.

	 E2 may provide protection through 3 known receptors: ERα, ERβ, 
and G-Protein-Coupled Estrogen Receptor (GPR30). ERα and ERβ 
are nuclear receptors derived from two different genes and both are 
localized to kidney, although precise tubular/vascular localizations 
are unclear. Studies by Lane associates [13], suggest ERα may 
have a role in mediating compensatory growth of the kidney during 
diabetes. In addition to the nuclear receptors, evidence for rapidly-
acting, membrane-associated estrogen receptors in kidney have been 
demonstrated [14]. Both ERα and GPR30 have been localized to 
membranes and may mediate some of the rapid, non-genomic actions 
of estradiol in kidney. E2 has been shown to have vasodilator actions, 
and produce nitric oxide via the GPR30 [15], which may be one 
means by which it affords protection.

	 In this study, we utilize a novel mouse model of unilateral renal 
ischemia associated with systemic inflammation (ApoE knockout 
mice with partial left renal artery ligation, RAL). We test whether E2 
replacement in RAL provides protection against atrophy, fibrosis, and 
dedifferentiation of the ischemic kidney. Furthermore, we evaluate 
potential mechanisms underlying differences observed including 
assessing metabolic parameters, growth factors, and inflammatory 
markers.

Methods
Experimental animals

	 All animal procedures were approved by the Institutional Animal 
Care and Use Committee (IACUC) of Georgetown University prior to 
initiating studies. Apolipoprotein E (ApoE) KO (Apoetm1Unc, 007069 
stock number) mice were purchased from The Jackson Laboratory 
(Bar Harbor, ME) at 10 weeks of age. Mice were equilibrated for 2 
weeks then divided into 7 treatments (n=6/treatment): 1) Intact Male 
(M); 2) Intact Male with Renal Artery Ligation (M-RAL); 3) Intact 
Female (F); 4) Intact Female with Ligation (F-RAL); 5) Female with 
Ovariectomy (F-OVX); 6) Female with Ligation and OVX (F-RAL-
OVX); and 7) Female with Ligation, OVX, and 17β-estradiol 
replacement (F-RAL-OVX+E2). For RAL, mice were anesthetized 
with a ketamine/xylazine cocktail, then an abdominal incision was 
made, and the left renal artery exposed. A tapered 32-gauge needle 
was positioned on top of the artery, and a silk suture (6-0) tied around 
both the artery and the needle. Then the needle was removed leaving 
a loosely ligated artery [16]. Stouffer et al. [16], have demonstrated 
significantly reduced renal blood flow by laser Doppler in this 
model. For OVX, both ovaries were located, ligated and removed. 
Sham surgeries were performed on intact (females only) and non-
RAL mice (male and female) consisting of a modest manipulation 
of the ovaries or renal artery, respectively, before surgical closure.  

OVX was performed under the same anesthesia as the RAL (or sham 
manipulation). Placebo (groups 1-6) or E2-releasing (group 7) pellets 
(Innovative Research, Sarasota, FL) were implanted subcutaneously 
into all mice near the end of the anesthesia period. E2 pellets were 
predicted to release approximately 2μg/day for 60 days. Urine was 
collected in mouse metabolic cages (24 hour), and semi-fasting (5-
hour) blood glucose was measured in the final week. After 60 days, 
animals were deeply anesthetized and euthanized by exsanguination 
following cardiac puncture. Blood and the right and left kidneys were 
obtained for analysis. 

Histology 

	 A section of the right and left kidneys were fixed (4% 
paraformaldehyde) and mounted on slides for histochemical analyses 
[17]. Masson’s trichrome staining was conducted in the Georgetown 
University Histology Core. Images were taken at 400X magnification 
on an Olympus SZX7 microscope equipped with an XC50 digital 
camera. Images (9/kidney/mouse) were examined for the degree 
of tubulointerstitial fibrosis using a qualitative assessment scoring 
method as described previously [18-20]. The scoring is based on 
presence of blue color (collagen), its location (apical or basolateral), 
interstitial cell proliferation, and tubule dilatation. Scoring was done 
on sections in a blinded fashion. 

Immunohistochemistry

	 Paraffin-embedded sections of kidney were rehydrated, treated 
with citric acid buffer, for antigen retrieval, blocked, and incubated 
overnight with primary antibodies against CD68 (rabbit polyclonal, 
Abcam ab125212). The second day, after application of the secondary 
anti-rabbit antibody, the slides were developed with a Horseradish 
Peroxidase (HRP) and DAB chromogen detection system (Vector 
Laboratories). This was followed by a second night incubation 
with primary antibody against FOX3P (mouse monoclonal, Abcam, 
ab36607) and M.O.M. (mouse-on-mouse) blocking reagent. After 
treatment with anti-mouse secondary, slides were developed with 
HRP and TMB (chromagen). After cover slipping, slides were imaged 
on an Olympus BX43 microscope with a 40X objective and 10X 
ocular. 

ELISAs, colorimetric assays, and blood glucose

	 Semi-fasting blood glucose (5-hour fast) was measured in the final 
week of the study with the use of a handheld glucometer (FreeStyle 
Lite, Abbott). Plasma levels of triglycerides (Biovision Incorporated, 
SKU: K622), insulin (EMD Millipore EZRMI-13K), interleukin-6 
(Mouse IL-6 ELISA MAX™, BioLegend), and 17β-estradiol 
(Abcam, ab108667) were measured by colorimetric or ELISA kits. 
IL-6 kidney right and left kidney concentrations were also assayed in 
selected groups. 

Western blotting

	 Renal cortex samples were obtained from both the left (ischemic) 
and right (contralateral) kidneys and processed for western blotting. 
Western blotting was performed as previously described [21]. 
Briefly, samples were prepared by homogenizing the tissues in a 
buffer containing protease inhibitors. After determining the protein 
concentrations, the homogenates were solubilized in Laemmli sample 
buffer. Quality of tissue sample preparation was assessed by staining 
loading gels with Coomassie-blue (Gelcode Blue, Pierce Endogen,  
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Rockford, IL), and then examining the sharpness of the bands. To 
assess the alterations in the protein abundances, semi-quantitative 
immunoblotting was performed. For immunoblotting, 10-30µg of 
protein from each sample was loaded into individual lanes of minigels 
of 7, 10 or 12% polyacrylamide (precast, Bio-Rad). Blots were 
probed with our own rabbit peptide-derived polyclonal antibodies 
against aquaporin-2 (aqp2, AQP2) [17], the sodium-potassium-
2-chloride cotransporter (slc12a1, NKCC2) [17] and the sodium 
phosphate cotransporter (slc34a1, NaPi-2a) [17]. Peptide sequences 
used to generate antibodies have been previously described [22-24]. 
Commercial antibodies were used to probe for transforming growth 
factor β1 (TGF-β1, Novus Biologicals, NB100-91995), and vascular 
endothelial growth factor (VEGF, Novus Biologicals, NB100-664). 
Loading accuracy was evaluated by probing the lower portion of the 
nitrocellulose membranes (or stripping and reprobing) with β-actin 
monoclonal antibody (SigmaChemical Co., St. Louis, MO). 

Statistical analysis

	 Quantitative data are expressed as mean±SEM. Data were 
analyzed by one-way or two-way Analysis of Variance (ANOVA). 
Significant differences between pairs of means were determined by 
a multiple comparisons test following a significant (p<0.05) one-
way ANOVA (SigmaPlot 10.0, Chicago, IL). P-values representing 
significant differences in the post-hoc testing were adjusted for 
“multiple comparisons”. Two-way ANOVA was used to determine 
the effect of kidney (right or left) and estradiol (presence or absence) 
on western blots and Masson’s trichrome staining.

Results
Body and kidney weights 

	 Final body and kidney weights are shown in figure 1. Male 
mice were significantly heavier than females (panel A). There were 
modest differences in body weight between female groups; however, 
none were significant (as assessed by multiple comparisons testing 
following one-way ANOVA). There was a strong trend for the F 
(sham females) to be weigh less than OVX females (non-adjusted 
p-value=0.00609, critical p-level<0.005). RAL had no effect on final 
body weight. Final wet weights of the contralateral (right) and ligated 
(or sham, left) kidneys are shown in figure 1B. M-RAL mice had 
significantly heavier right kidneys than F (intact sham females) mice 
(multiple comparisons test following a significant, p=0.001, one-way 
ANOVA). There were no other significant differences in the weights 
of the right kidney, although most RAL groups showed some evidence 
of compensatory enlargement (hatched bars) M mice (intact sham 
males) had significantly heavier left kidneys than F-RAL and F-RAL-
OVX groups (one-way ANOVA p-value=0.002). E2 replacement 
increased mean left kidney weight in RAL females (black bar) so that 
it was not significantly different from the other groups. 

Urine electrolytes

	 Urine electrolytes (concentrations and absolute excretion- 24 
hours) were measured primarily as an index of food intake, but also to 
determine whether treatments affected excretion of major electrolytes 
(Table 1). In general, males had slightly greater urine excretion of Na+, 
K+, and Cl- than most female groups; however, these differences were 
not significant by one-way ANOVA. Similarly, we did not observe 
that ovariectomy, RAL, or E2 replacement significantly altered these 
parameters.

Metabolic profile

	 Metabolic parameters including E2 concentrations in plasma are 
shown in figure 2. Plasma E2 levels were a little over 2-fold higher 
(on average) in OVX + E2 replaced mice relative to all other groups, 
and significantly higher than F-RAL and F-OVX groups (Figure 2A). 
Semi-fasting blood glucose (panel B), plasma triglycerides (panel 
C), and plasma insulin (panel D) concentrations were not different 
amongst groups (one-way ANOVA); however, there was a strong 
trend for these values to be reduced in intact females and in OVX+E2 
females.

Figure 1: Body and kidney weights- A: Final body weights; B: final kidney 
weights. “A” is assigned to the highest mean and significantly greater than “B”. 
Bars without assigned letters indicated that that mean was not significantly dif-
ferent from any other mean (multiple comparisons test following a significant 
one-way ANOVA); n=6 mice/group; M- Male, RAL- Renal Artery Ligation, 
F- Female, OVX- Ovariectomy, E2- 17β-estradiol.

Figure 2: Metabolic factors and hormone concentrations- A. plasma E2, B. 
blood glucose, C. plasma triglycerides, D. plasma insulin. “A” is assigned to the 
highest mean and significantly greater than “B”.  All means without letters were 
not different from any of the other means (multiple comparisons test following 
a significant one-way ANOVA); n = 6 mice/group; M- male, RAL- renal artery 
ligation, F- female, OVX- ovariectomy, E2- 17b-estradiol.
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Interleukin-6 (IL-6) in kidneys and plasma

	 The cytokine, interleukin-6, which has both inflammatory and 
anti-inflammatory actions, was evaluated in plasma (Figure 3A). 
Overall RAL had a tendency to increase plasma IL-6 by about 10% 
(hatched bars) except in E2-replaced mice, where the mean increase 
was much greater. M-RAL had significantly higher plasma IL-6 
concentrations than F-OVX mice. E2-replaced females had the highest 
mean level of plasma IL-6 although due to high variability it wasn’t 
significantly different from other groups (by multiple comparisons 
testing). Kidney (right and left) concentrations of IL-6 were evaluated 
in selected groups (Figure 3B). Intact Females (F) had higher IL-6 
concentrations in the contralateral right kidney than did F-RAL-OVX. 
In the left (RAL) kidney, E2 replacement in RAL females increased 
IL-6 concentrations to a level comparable to the right kidney in intact 
and replaced groups.

Histology

	 To determine the effect of E2 therapy on collagen deposition in the 
right and left kidneys of the female OVX RAL mice, we conducted 
Masson’s trichrome staining (Figure 4). Using a customized scoring 
system [20,25,26], we assessed Tubular Interstitial Fibrosis Index 
(TIFI). In this scoring system, scores range from 0 (no evidence 
of fibrosis) to 4 (highest incidence). As expected, median levels 
of fibrosis were significantly higher in the left (ligated) versus the 
right (contralateral) kidney. Furthermore, E2 replacement led to a 
significantly lower TIFI score (p=0.025). Mouse individual TIFI are 
shown in panel D. Mean TIFI scores and 2-way ANOVA statistics are 
shown in panel E.

Group
Urine Volume

(ml/d)
Urine Sodium 

(mM)
Urine Potassium 

(mM)
Urine Chloride 

(mM)
Urine Sodium 

(μmol/d)
Urine Potassium 

(μmol/d)
Urine Chloride

(μmol/d)

M 2.3±0.2 132±6 240±20 186±14 298±26 538±45 417±34

M-RAL 2.4±0.3 126±7 214±13 172±10 299±36 503±58 404±46

F 1.3±0.2 137±9 244±14 188±11 191±39 341±67 263±54

F-RAL 1.6±0.3 121±11 238±25 183±19 197±42 367±56 286±50

F-OVX 1.6±0.3 150±11 261±14 200±9 231±27 408±54 315±44

F-RAL-OVX 2.0±0.3 123±14 231±22 182±21 231±22 439±50 342±42

F-RAL-OVX+E2 2.0±0.3 119±12 239±25 172±23 218±17 436±32 309±21

ANOVA (p-value) 0.17 0.37 0.79 0.90 0.11 0.16 0.14

Table 1: Urine Electrolyte Concentration and Absolute Excretion*.

Note: *mean ±sem; Data were analyzed by one-way ANOVA (p-values indicating significance were adjusted for multiple comparisons); no significant 
differences were found.

Figure 3: Interleukin-6- A: plasma concentrations; B: kidney concentrations in 
selected groups (as indicated). “A” is assigned to the highest mean and signifi-
cantly greater than “B”. All means without letters were not different from any 
of the other means (multiple comparisons test following a significant one-way 
ANOVA); n=6 mice/group; M- Male, RAL- Renal Artery Ligation, F- Female, 
OVX- Ovariectomy, E2- 17β-estradiol.

Figure 4: Masson’s trichrome staining of kidney- Representative images from 
A: cortex; B: inner stripe of the outer medulla (ISOM); and C: inner medulla 
(IM) in female, ovariectomized (OVX) mice with placebo or E2 replacement. 
Collagen stains blue. D. Graph indicating individual TIFI (tubular interstitial 
fibrosis index) scores calculated in each mouse. Median score and 95% confi-
dence intervals are indicated with horizontal lines. “A” is assigned to the high-
est mean and significantly greater than “BC” or “C”, but not “AB”. “AB” is sig-
nificantly greater than “C”, but not “BC” (multiple comparisons test following 
a significant one-way ANOVA, n=6/group). E. Mean TIFI scores in each group 
and 2-way ANOVA p-values.
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Immunohistochemistry

	 To evaluate the degree and type of inflammatory infiltration in the 
ligated and contralateral kidneys, we conducted immunohistochemistry 
for CD68 (macrophage marker) and Foxp3 (T-regulatory cell marker, 
Figure 5). Qualitatively, we found a greater degree of staining for 
macrophages in the ischemic kidney, as we predicted, in response to 
the localized injury (green arrows). However, even the contralateral 
kidney in both E2 and placebo-treated mice showed some presence of 
macrophages (top panels). Foxp3 is a transcription factor found nearly 
exclusively in T-regulatory (Treg) cells, thus can be used as a marker 
to some extent. We found apparent increased nuclear localization of 
Fox3p (blue arrows) in the placebo treated mice. 

Maintenance of transporter/channel levels

	 To further evaluate the impact of E2 replacement after RAL on 
epithelial structure and differentiation, we evaluated the protein levels 
of 3 transporters/channels in major tubule reabsorptive cell types: 1) 
proximal tubule (sodium phosphate cotransporter, NaPi-2), 2) thick 
ascending limb (sodium potassium 2-chloride cotransporter, NKCC2), 
and 3) connecting tubule and collecting duct (aquaporin 2, AQP2) in the 
F-RAL-OVX and F-RAL-OVX+E2 groups. Representative western 
blots for these transporters and channel are shown in figure 5 and 6. 
The densitometry summary (data normalized to β-actin) is shown in 
panel B. In general, the expression of transporters was reduced in the 
ischemic left kidney (relative to the right kidney), but there was high 
variability. E2 replacement tended to increase the expression of all 3 
proteins, even in the absence of RAL. The two bands apparent for 
NKCC2 are likely the dimer and monomeric forms of this protein, as 
we’ve previously described [27]. Greater degrees of the dimer were  
found in the left kidney, perhaps due to high levels of fibrotic tissue 
and cross-linking. AQP2 also ran as two specific bands with the upper

  

band representing a glycosylated form of the protein as previously 
described [22]. For both proteins, for densitometry the two bands 
were summed (area X density). 

Growth-related proteins

	 Proteins that facilitate compensatory enlargement and tissue 
remodeling are shown in figure 7. TGF-β1 protein levels were about 
50% lower in the ischemic, left kidney and increased by E2 in both 
kidneys. Vascular Endothelial Growth Factor (VEGF) was increased 
to the greatest extent in the atrophied (left) kidney of the non-replaced 
group. In contrast, in the contralateral kidney, E2 increased VEGF 
expression. All bands were summed for VEGF. 

Correlations of kidney weight with proteins 

	 We next correlated the weight of the kidney(s) with the western 
blot band density to determine whether expression of evaluated 
proteins correlated with changes in wet weight (Figure 7 and 8). 
We found significant correlations of 4 out of 5 proteins with kidney 
weight (panel F). AQP2 (panel C) and TGF-β (panel D) were highly 
positively correlated with kidney weight. VEGF was significantly 
negatively correlated with kidney weight (panel E).

Discussion
	 Clinically pre-menopausal women have been demonstrated to 
experience less severe renal injury in response to both acute and 
chronic renal ischemia as compared to men [28,29]. However, this 
distinct female sex advantage appears to disappear with menopause 
[25]. Ischemic events in the kidney can occur acutely, e.g., in surgery 
or trauma, or chronically, e.g., due to genetic or environmental factors 
leading to renal artery stenosis.

Figure 5: CD68 and FOXP3 immunohistochemistry- Representative Immu-
nohistochemical staining for CD68 (cluster of differentiation 68, macrophage 
marker, brown stain and green arrows) and FOXP3 (forkhead box P3 transcrip-
tion factor and marker for T-regulatory cells, blue stain and blue arrows) of kid-
ney cortex of F-RAL-OVX (Placebo) and F-RAL-OVX+E2 (E2). Qualitatively 
FOXP3 staining appeared to have greater nuclear localization in the place-
bo-treated mice, while macrophages showed greater infiltration of glomerulus 
in E2-treated mice. F- Female; RAL- Renal Artery Ligation; E2- 17β-estradiol.

Figure 6: Western blotting of transporters/channels- A: Representative western 
blots probed with antibodies against NaPi-2, NKCC2, AQP2, and β-actin (for 
loading correction). Each lane is loaded with a sample from a different mouse 
right and left kidney whole-cell homogenates (n=6 mice/group). B: Summary 
showing mean band densities (±standard error) for each group right and left 
kidneys. Bands densities were expressed relative to the right kidney for the 
OVX-RAL group (set to 100%). “A” is significantly greater than “B”, and “B” 
is significantly greater than “C” (multiple comparisons test following a signif-
icant one-way ANOVA, n=6/group). Two-way ANOVA (kidney X treatment) 
p-values are provided below graph.
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	 Mechanisms protective of young women are unclear, but likely 
involve ovarian steroids and their impact on inflammation, oxidative 
stress, blood pressure, and cellular apoptosis/regeneration [28]. 
Therefore restoring ovarian steroids (or ovarian-steroid-like mimics) 
in post-menopausal women (and other women of low-estrogen 
status) could potentially short-circuit pathways of renal damage and 
postpone or eliminate the progression to ESRD. Nonetheless, the 
side-effects of replacement are still in need of additional scrutiny. 
In this study, we evaluated the effects of E2 replacement on chronic 
partial Renal Artery Ligation (RAL) in young Ovariectomized (OVX) 
female ApoE KO (atherosclerosis-prone) mice. We found that, E2 
replacement (60 days) significantly attenuated atrophy and fibrosis of 
the ligated kidney, and the loss of major epithelial transporters. These 
observations will be discussed in greater detail below. 

	 Our animal model was adapted from that of Stouffer et al. [16], 
who had demonstrated that unilateral RAL causes a short-term 
vascular inflammatory reaction in ApoE KO mice. They showed RAL 
in mice led to the development of atheroma in the abdominal and 
carotid arteries, which was associated with macrophage infiltration, 
as well as, dedifferentiation of smooth muscle cells [16]. Their 
study did not report changes in the kidneys. In our current study, we 
found partial RAL in the ApoE KO mouse reduced the wet weight 
of the ligated kidney by around 50%; however, this reduction was 
significantly attenuated in the female ovariectomized mice with 
replacement of E2. This is not entirely surprising, as 17β-estradiol 
is a known genomic stimulator of growth through regulation of 
transcription via the estrogen response element (ERE). In fact, VEGF 
is one known growth factor in which an ERE has been reported 
[30]. In addition, E2 can bind to non-genomic receptors that mediate 
crosstalk with other growth factors and G-protein-coupled signaling 
pathways including Mitogen-Activated-Protein Kinase (MAPK) and 
Phosphatidylinositol-3-Kinase (PI3K/AKT) [31]. 

	 Furthermore, in the E2 -treated mice, we found attenuation in 
the reduction (in the ligated kidney) of the protein levels for 3 
transport/channel proteins that we used as markers of epithelial 
integrity, i.e., Aquaporin-2 (AQP2), marker for collecting duct 
principal cells, the Sodium Phosphate Cotransporter (NaPi-2), 
marker for proximal tubule, and the Sodium-Potassium-2-Chloride 
Cotransporter (NKCC2), marker for the thick ascending limb. Of 
the 3, the expression of AQP2 was most highly correlated (r=0.70, 
p=0.00012) with the weight of the kidney. This suggested that the 
attenuation in atrophy with E2 was directly associated with the 
maintenance of epithelial cell differentiation, and this relationship 
appeared somewhat more critical in the collecting duct. It is unclear 
whether AQP2, NKCC2, or NaPi-2 genes have estrogen response 
elements in their 5’ flanking regions; however, all 3 of these genes 
have been reported to have sex differential regulation of one form or 
another. We previously found that E2 replacement to ovariectomized 
rats reduced NKCC2 and NaPi-2 [32]. Similarly, in another study, we 
found reduced AQP2 and NaPi-2 in kidneys from female versus male 
mice [17]. Therefore, the directional change in these transporters/
channels with E2 replacement did not support a direct effect of E2 
to influence gene expression, but rather a generalized pattern of 
maintenance of the epithelial phenotype. Thus, we found evidence for 
preservation of the major reabsorptive cell types of the renal tubule, 
i.e., proximal tubule cells, thick ascending limb cells, and collecting 
duct cells in the E2-treated RAL females. Whether E2-therapy was as 
beneficial to endothelial cells of the renal blood supply is less certain.  

Figure 7: Western blotting of growth factors- A: Representative blots probed 
with antibodies against TGF-β, VEGF, and β-actin (for loading correction). 
Each lane is loaded with a sample from a different mouse right and left kidney 
whole-cell homogenates (n=6 mice/group). B: Summary showing mean band 
densities (±standard error) for each group right and left kidneys. Bands densi-
ties were expressed relative to the right kidney for the OVX-RAL group (set to 
100%). “A” is significantly greater than “B”, and “B” is significantly greater 
than “C” “AB” is different from “C”, but not “A” or “B” (multiple comparisons 
test following a significant one-way ANOVA, n=6/group). Two-way ANOVA 
(kidney X treatment) p-values are provided below graph.

Figure 8: Correlations of proteins with kidney weight- Correlation of normal-
ized protein band densities with kidney weight for A. Napi-2; B. NKCC2, C. 
AQP2, D. TGF-β, and E. VEGF; filled circles- left kidney F-RAL-OVX, open 
circles- left kidney F-RAL-OVX+E2, filled diamonds- right kidney F-RAL-
OVX, open diamonds- right kidney F-RAL-OVX+E2. F. R and p-values for the 
correlations. Bolded p-values indicate a significant correlation.
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VEGF (primarily expressed in the circulatory cells of the kidney) was 
increased by E2 in the right (contralateral kidney), but suppressed in 
the left (ligated) kidney. It is possible that this the result, rather than a 
cause, for relatively less ischemia in the E2-treated mice. 

	 The attenuated atrophy and improvement in transporter/channel 
expression, was associated with a reduction in the Tubular Interstitial 
Fibrotic Index (TIFI) in the kidneys from E2-treated mice. The TIFI 
indicated significantly more fibrosis in the left (ligated) kidneys 
in both treatment groups; however, 4 out of 6 mice in the non- E2 
replaced group had severe fibrosis and the maximum score, while this 
score was received by only one of the E2 replaced mice. It is important 
to note that TIFI was variable animal-to-animal. It is likely that when 
fibrosis and epithelial-to-mesenchymal transition initiates, it rapidly 
progresses. 

	 E2 potentially could reduce renal pathology in this model in a 
number of potential ways. One might be via direct anti-inflammatory 
actions. We measured interleukin-6 (IL-6) in plasma and kidneys as 
an indicator of inflammation. Surprisingly, IL-6 levels were increased 
by E2 in both plasma and in kidney. The relationship between E2 and 
IL-6 is complex. In one study, macrophage-derived IL-6 levels after 
burn injury were found initially suppressed in female mice, but then 
increased in the later course of injury [33]. The rise in IL-6 after injury 
is thought to result in immunosuppression [16]. Physiological levels 
of E2 are reported to stimulate the immune system, while higher, 
i.e., pregnancy levels, of E2 are reported to suppress the immune 
system [34]. Thus, the E2 dose provided our mice (or the fact that 
it was constantly infused rather than cyclical) could be interpreted 
as producing a phenotype with regard to IL-6 more similar to a 
“pregnancy” state, and might be associated with reduced immune 
responses.

	 It is important to note, however, that IL-6 has inflammatory, anti-
inflammatory, as well as, regenerative actions, dependent on the ratio 
of expression of membrane bound to soluble IL-6R [35]. Activation 
of membrane bound IL-6R (in combination with gp130) has been 
demonstrated to activate STAT3 (signal transducer and activator of 
transcription 3) leading to epithelial cell proliferation and inhibition of 
cell apoptosis (at least in intestinal cells) [36]. Furthermore, IL-6R KO 
mice were shown to develop glucose intolerance and insulin resistance 
[37]. Thus, activation of IL-6 production by E2 may have a role in 
both regeneration of the kidney, as well as, marginal improvement in 
metabolic parameters, i.e., plasma insulin and triglycerides and blood 
glucose. Additional studies would be needed to test a causative role 
of IL-6 in these actions. STAT3 is also phosphorylated (activated) 
directly by estrogen, and has postulated to protect against damage in 
the brain due to cerebral ischemia via this mechanism [38].

	 We found evidence of modest macrophage infiltration into both 
ischemic and contralateral kidneys of mice that had undergone renal 
artery ligation. This was not unexpected and supported a systemic 
response, primarily affecting the kidney with greater ischemia. In 
general, E2 enhanced macrophage infiltration particularly into the 
glomerulus. Estrogen receptors activate macrophages and can be 
involved in differential polarization [39]. Additional study into this 
area is warranted. 

	 E2 replacement also increased the expression of transforming 
growth factor beta (TGF-β1) in both the ischemic and contralateral 
kidney. TGF-β1 has been implicated in the Epithelial-to-Mesenchymal  

Transition (EMT) characteristic of renal disease-associated fibrosis 
by signaling through the SMAD and SMAD-independent pathways. 
A recent study by Tam et al. [9], similarly showed an increase in lung 
TGF-β1 with E2 replacement to ovariectomized mice after exposure 
to smoke. In this case, the increase was associated with stenosis 
and fibrosis of pulmonary airways. Therefore E2 may have a role in 
fibrotic repair pathways. In our study, we saw significant, but not total 
attenuation of fibrosis in the ligated kidney with variability in how 
animals responded; however, it was clear that E2 attenuated loss of 
kidney mass with ischemia, which was highly correlated with TGF-β1 
expression. It is likely these factors are related. In addition to roles in 
proliferation and differentiation of cells, TGF-β1 plays an important 
role in control of the immune system. Furthermore, estrogen has been 
demonstrated to regulate nuclear factor kappa-B (NF-κB) [40], an 
important transcriptional determinant of cell survival, proliferation, 
inflammation, and immune regulation.

	 Another means whereby E2 may have been protective against 
renal atrophy is via a reduction in blood pressure. We did not have 
the opportunity to collect blood pressure data on our mice; however, 
Stouffer et al. [16], have demonstrated a modest rise in blood pressure 
in the partial RAL model. Numerous investigations by our group [41] 
and others [42-44], have demonstrated that E2 replacement to OVX 
rodents reduces blood pressure and/or ameliorates over-activity of 
the Renin-Angiotensin-System (RAS). Thus, it is very plausible that 
reduced activity of the intrarenal and perhaps systemic RAS plays 
some role in the protection afforded by E2 in our study. Moreover, E2 
via activation endothelial Nitric Oxide Synthase (eNOS) and nitric 
oxide synthesis could improve ischemia-mediated reduced renal 
blood flow and impart renal benefit via this means [45]. Estrogen 
supplementation has been shown to improve endothelium-related 
dilation through increasing level of nitrite/nitrate in aged women, but 
not in men [46].

	 Overall, our study demonstrates that E2 replacement to 
ovariectomized female ApoE KO mice not only attenuates atrophy and 
fibrosis in the ischemic kidney, but also assists in the maintenance of 
epithelial transporter/channel profile. These findings are particularly 
relevant for post-menopausal women, as well as, young women with 
low E2 levels, either due to surgery or other means, and are susceptible 
to or experiencing renal ischemia. 
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