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Abstract

Dental pain has a significant impact on the population and
the mechanisms remain poorly understood. However, there is
accumulating evidence that purinergic receptors are key
contributors in central and peripheral dental nociception
mechanisms. These purine receptors are localized in the trigeminal
sensory neurons and are activated by Adenosine 5’ Tri-Phosphate
(ATP), which is thought to be a primary mediator in dental pain.
Recent evidence has implicated purinergic receptors in persistent
pain states. This includes increased sensitivity to ATP in satellite glia
cells (which surround the trigeminal sensory neuron cell bodies), and
reports of ATP signaling between dentin producing odontoblasts and
trigeminal sensory neurons. This article will briefly summarize the
importance of the purinergic receptor and ATP as a key mediator in
the mechanisms of dental pain.

Dental pain has a significant impact on the population and
presently its poorly described mechanisms limits its effective
therapeutic management in patients. Purinergic receptors are
accumulating interest as key contributors in central and peripheral
dental nociception mechanisms. These receptors are localized in the
trigeminal ganglia including dental pulp afferents and central afferent
synapses.

Adenosine 5’ Tri-Phosphate (ATP) is thought to be a primary
mediator in dental pain, activating these purinergic receptors. Recent
evidence has implicated purinergic receptors persistent stimulation
in chronic pain states and increase of ATP nociception sensitivity in
satellite glia cells located around trigeminal neuron cell bodies.
Other emerging evidence has demonstrated ATP signaling in the
dental pulp. Dentin producing odontoblasts release ATP and activate
dental nociceptive afferents through the purinergic system. This
article will briefly summarize the importance of the purinergic
receptor and ATP as a key mediator in the mechanisms of dental
pain.
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Introduction

Dental pain has been shown to be prevalent in western society with
reporting rates as high as 53% in random telephone surveys [1,2]. This
pain has significant impact on daily function and is a major reason for
presentation at dental clinics. Unfortunately, the underlying
mechanisms of dental pain remain relatively poorly described.

Orofacial pain is conveyed centrally by trigeminal primary
afferent fibres and most trigeminal nociceptive sensory neurons
synapse in the trigeminal brainstem subnucleuscaudal is (also known
as the medullary dorsal horn) before projecting to higher centers
allowing conscious awareness and thus pain [3-5].

A key contributor to both peripheral and central components
of trigeminal pain are purinergic receptors [6-9]. Adenosine 5
Tri-Phosphate (ATP) and related nucleotides act at both ionotropic
(P2X) and metabotropic (P2Y) purinergic receptors and most P2X
receptor subtypes, except for P2X_, are expressed in the spinal dorsal
horn neurons, dorsal root ganglia (DRG) and trigeminal ganglia, and
the central terminals of primary afferents [10, 11]. The aim of this
article is to briefly summarize key evidence of the importance of
purinergic receptor mechanisms in dental nociception (Figure 1).
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Figure 1: Dental Pain.

By definition, our perception of pain is dependent on cortical awareness.
This schematic indicates the pathways involved. This review highlights the
role of ATP signaling in three key peripheral areas. 1. Dental pulp and inset
(a): schematic indicating the proximity of odontoblasts and trigeminal nerve
terminals. Key data suggest that ATP released from odontoblasts binds to P2X3
receptors thus lowering the activation threshold of these nerves. 2. Peripheral
nerve fibres and trigeminal ganglia, including inset (b): Much cellular
physiology and histology has focused on the trigeminal ganglion neurons,
P2Xareceptors mediate a large Ca?* flux which explains the profound impact
that their activation has on cell excitation. 3. The trigeminal nociceptive
sensory neurons terminate in the medullary dorsal horn (subnucleuscaudalis).
Activation of P2X receptors at this synapse causes increases in excitatory
neurotransmission.

J

There has been particular interest in P2X; containing receptors
in the trigeminal system as these receptors are found predominantly
on small diameter nociceptive sensory neurons [12-17]. In addition,
other key P2X receptor subtypes that have attracted interest in the
trigeminal system include P2X;, P2X, and P2X, [14-17]. One
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functional reason for this interest is that many P2X receptors mediate
a large Ca® current, equivalent to that in the widely studied NMDA
receptors [18].

Recent studies have raised the exciting possibility that satellite
glia located around the trigeminal sensory neuron cell bodies may
contribute actively to enhancing nociceptive transmission in this area.
Both persistent inflammation and nerve damage induced a significant
increase in the sensitivity of ATP applied to these cells [19]. The
idea of neuron-glia cross talk in a similar inflammatory experiment
implicated another ATP receptor, the P2Y, receptor with compelling
in vivo evidence that P2Y, receptors may be a reasonable future drug
target for persistent trigeminal inflammatory pain conditions [20]
which may include many commonly seen dental pain conditions. This
relatively new line of research is likely to yield significant results in the
coming years.

ATP is known to act as a fast neurotransmitter at many central
synapses [21]. Indeed, stimulation of P2X; and containing receptors
causes a significant increase in excitatory neurotransmission in the
medullary dorsal horn [22]. In addition, stimulation of P2X; and
containing receptors in the tooth pulp is sufficient to induce central
sensitization [12] thought to be a major contributor to chronic pain
states [5,23].

What of the peripheral ends of the trigeminal sensory neurons that
innervate teeth? We know that dentinal hypersensitivity may develop
as a result of stimuli to exposed, sensitized, dentin following enamel
loss through erosion and abrasion, attrition, dental caries and
enamel or dental defects [24,25]. Trigeminal ganglion neurons and
dental pulp nerve fibres project through the odontoblast layer and into
the dentine tubules [26]. It has been shown that ATP is a key signaling
molecule in this area. Not only have dentin producing odontoblasts
been shown to release ATP [25,27] but the enzymes necessary for
extracellular ATP hydrolysis are also present in human dental pulp
[28].

It is now well established that P2X; receptors are present on small
diameter sensory nerve terminals in the dental pulp thus providing an
appropriate target for ATP to interact with sensory nerves [7,26,29].
Considering the release of ATP, it has been established that a
particular vesicular nucleotide transporter is responsible for
packaging and releasing extracellular ATP [29] and this transporter is
present in odontoblasts [30]. In addition, it was found that decreasing
the amount of vesicular nucleotide transporter (using siRNA) resulted
in a significant decrease in ATP release thus functionally implicating
the transporter in this process [30].

The predominant theory relating to dentinal hypersensitivity is the
hydrodynamic theory [31,32]. This theory suggests that mechanical
stimuli be propagated along patent dentinal tubules and transduced
within the pulp [32]. One important family of channels that sense
mechanical and thermal stimuli are the TRP channels [33] and all of
the odontoblast data reviewed above has involved either mechanical
or thermal stimuli [25,27,30].

ATP signaling has been implicated in mediating changes in
mechanical sensitivity in other peripheral areas too. In the rodent
hind limb, increases in extracellular ATP have been shown to
contribute to mechanical allodynia [34]. Recently, chaperone proteins
like sigma-1 receptors have been shown to facilitate the P2X receptor
mediated mechanical allodynia [35] further contributing to
understand the underlying mechanism behind ATP signaling in

mechanical sensitivity. In trigeminal sensory neurons innervating
the dura, it has been shown that ATP is released from a range of cell
types including smooth muscles and endothelial cells [36], and that
this ATP contributes to peripheral sensitization in trigeminal sensory
neurons during migraine [14,36,37].

In conclusion, although we acknowledge that multiple
mechanisms mediate dental pain we have shown that there is now
strong evidence that ATP has a core role in dental and other pain
states.
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