HERALD

The Use of Intravenous Tenecteplase in Acute Ischemic Stroke after Idarucizumab Reversal of Dabigatran Anticoagulant Effects; Experience from a Regional Hospital Directed by Video Telemedicine Stroke Specialist

Pascal Ogeleka ${ }^{1,3}$ and Tunde Maiyaki Ibrahim ${ }^{2,3 *}$
${ }^{1}$ Cardiology Department, Peninsula Health, Frankston-Victoria, Australia
${ }^{2}$ Department of Medicine, Goulburn Valley Health, Graham Street, Shepparton, Vic 3630, Australia
${ }^{3}$ Department of Rural Health, Shepparton Rural Clinical School, the University of Melbourne, 49 Graham Street, Shepparton, Victoria 3630, Australia

Abstract

Novel Oral Anticoagulants (NOACs) are widely used in patients with non-valvular atrial fibrillation to prevent Acute Ischemic Stroke (AIS) and other thrombo- embolic phenomena. The management of AIS with Intravenous Thrombolysis Therapy (IVT), also known as fibrinolytic therapy in people who are taking NOACs poses a great challenge due to increased risks of hemorrhage and intracranial bleeding. We present the case of a 77-year-old man on dabigatran for atrial fibrillation who woke up with an extensive right middle cerebral artery ischemic stroke and had his anticoagulant effects reversed with idarucizumab before successful thrombolysis with intravenous tenectaplase.

[^0]
Introduction

The Novel Oral Anticoagulants (NOACs)- the factor Xa (rivaroxaban and apixaban) and direct thrombin (dabigatran) inhibitors- are widely used to prevent embolic events, especially Acute Ischemic Stroke (AIS), in patients with non-valvular Atrial Fibrillation (AF) [1]. Despite NOACs use in AF and venous-thromboembolic phenomenon about 1-2 \% of individuals with atrial fibrillation and $0 \cdot 1-0 \cdot 2 \%$ of those with venous thromboembolism who are receiving one of the NOACs (dabigatran, rivaroxaban, or apixaban) are likely to develop AIS yearly. Additionally, $0 \cdot 2-0 \cdot 5 \%$ of individuals with atrial fibrillation who are receiving one of the NOACs can be expected to experience an intracranial hemorrhage [2]. An important part of the management of AIS involves the intravenous administration of a recombinant tissue Plasminogen Activator (rtPA) to achieve reperfusion ${ }^{1}$. To improve outcomes in patients who experienced a potential disabling AIS (National Institutes of Health Stroke Scale (NIHSS) score >4), the American Heart Association, American Stroke Association, European Stroke Organization, and Stroke Foundation Australia recommend the use of IV rtPA within 4.5 to 9 hours of symptom onset. This reperfusion method, however, is challenging in AIS patients who are already taking a NOAC because of increased risks of NOACs-associated bleeding especially spontaneous intracranial hemorrhage (SICH) [14]. Despite this risk the treatment options are very practicable even in regional health facilities linked to the video assisted telehealth center through which stroke specialist can remotely direct patient care. Therefore, IV rtPA is still most practicable treatment option even in situation of prior NOAC use. Although some stroke experts advise for it use only if last dose of NOAC was 48 hrs or more before the stroke or the specific coagulation parameter are normal which can be achieved by reversal of anticoagulation [1,4,5]. This case report is to show clinicians the real-world successful use of IV rtPA to treat stroke patient after reversal of NOAC in a regional hospital using telemedicine.

Case Presentation

A 77-year-old male farmer was admitted with an extensive right middle cerebral artery ischemic "wake up stroke" in the context of non-valvular AF on dabigatran (110 mg BD) about 13 hours after the patient was last known to be well. On the background of significant cardiovascular risk factors of hypertension, type 2 diabetes mellitus and dyslipidemia giving CHADSVASC score of 3 prior to his stroke. He was also on metoprolol 25 mg BD, metformin 1 g BD and fenofibrate 145 mg daily respectively.

The main neurological features were right-sided headache and left-sided hemiparesis, hemisensory loss, hemi spatial neglect, hemianopia, and motor aphasia with NIHSS score of 10 . He was hemodynamically stable with $\mathrm{BP}=150 / 70 \mathrm{mmHg}$ and in AF with average heart rate of about $90 / \mathrm{min}$. The patient had the last dose of dabigatran 16 hours before presentation. The initial CT stroke imaging protocol (Figure $1 \& 2$) revealed acute right frontal and temporal lobe infarcts with ischemic penumbra extending to involve the right temporoparietal lobe and thrombus in the M2 segment of the right Middle Cerebral Artery (MCA).Base line blood glucose was $5.9 \mathrm{mmol} / \mathrm{L}$, international

Citation: Ogeleka P, Ibrahim TM (2022) The Use of Intravenous Tenecteplase in Acute Ischemic Stroke after Idarucizumab Reversal of Dabigatran Anticoagulant Effects; Experience from a Regional Hospital Directed by Video Telemedicine Stroke Specialist. J Clin Stud Med Case Rep 9: 0140.

\author{

- Page 2 of 3 -
}
normalized ratio (INR) of 1.2, activated Partial Thromboplastin Time (aPTT) of 31 seconds, prothrombin time (PT) of 16.7 seconds, platelets count of $247 / \mathrm{nl}, \mathrm{HbAlc}$ of $6.2 \%(44 \mathrm{mmol} / \mathrm{mmol} \mathrm{Hb})$, and hemoglobin of $139 \mathrm{~g} / \mathrm{L}$. The patient had grade 4 chronic kidney disease with serum creatinine of $151 \mu \mathrm{~mol} / \mathrm{l}$ and eGFR $38 \mathrm{ml} / \mathrm{min}$. The lipid profile was essentially normal and ECG showed rate controlled atrial fibrillation.

Figure 1: Initial CT showing acute right frontal and temporal lobe infarction and right temporoparietal lobe ischemia.

Figure 2: Initial perfusion CT scan showing reduced cerebral blood flow, increased cerebral blood volume, and prolong mean transient time in right frontal and temporal lobe, right temporoparietal lobe, and attenuation of the M2 segment of the right middle cerebral artery (MCA).

As per-protocol the case was discussed with the Victorian Stroke Telemedicine (VST) neurologist and patient was subsequently thrombolyzed with IV tenecteplase ($0.25 \mathrm{mg} / \mathrm{kg}$ body weight) after reversal of dabigatran with idarucizumab 5 mg single dose. He was admitted on the intensive care unit and acute early stroke rehabilitation was initiated.

The serial NIHSS scores at two- and twenty-four-hours post-thrombolysis were 10 and 17 , respectively suggesting worsening neurological status. A non-contrast CT brain 24-hours post IVT showed extensive right middle cerebral artery territory established infarct and interval cerebral edema but with no evidence of Hemorrhagic Transformation (HT). The NIHSS score and clinical assessments remained unchanged on day 5 post-IVT but repeat CT (Figure 3) showed established extensive infarct with a small HT in the right frontal lobe. Although the recovery was slow our patient improved remarkably (ambulating with a four-wheel frame) over a 4-month period, with a NIHSS score of 5 at 4 months.

Figure 3: CT scan on day 5 post IVT showing established extensive Rt MCA infarct and small hemorrhagic transformation in the right frontal lobe.

Discussion

We described a successful IVT with tenecteplase after reversal of dabigatran with idarucizumab in a patient with permanent non valvular AF on dabigatran who presented with wakeup AIS. Although our patient's parameters (NIHSS score, and radiologically) showed initial deterioration he had NIHSS score reduction of five with neurological and functional improvement over four- months after thrombolysis. The outcomes (small HT and reduction in NIHSS score) in our patients are consistent with that reported in earlier studies on this subject of using IVT after dabigatran reversal with idarucizumab [6,7]. Kermer, et al., in a meta-analysis of 80 AIS patients treated with IVT after dabigatran reversal with idarucizumab showed clinical improvement in stroke severity and quality of life in 78% of the patients [6]. Frol, et al, in their comprehensive review of 251 AIS patients reported HT (8\%), SICH (8\%) and a mean reduction of six from the initial NIHSS score after IVT use post stroke after dabigatran reversal with Idarucizumab [7]. This rate of HT and SICH was reported to be like those who had no prior anticoagulant. HT is a spontaneous complication in some patients with AIS even without the use of thrombolytic agents such as idarucizumab. This risk is increased by hypertension, hyperglycaemia, stroke severity, and fibrinolytic therapy [8]. Our patients had all these factors therefore the small haemorrhagic transformation is not surprising as this could have occurred without the use of thrombolysis. The small volume of the HT in our patients despite the large size of the infarct might be due to good blood pressure (150/90) and blood sugar level control $(7 \mathrm{mmol} / \mathrm{l})$. The mechanism of HT in AIS is not very clear but postulated mechanism include increase in vascular permeability caused by an alteration in the blood-brain barrier which occur because of increased thrombin production in AIS [8-10]. Additionally, the anti coagulation associated with NOAC use in AIS patients increases the extravasation of blood into the infarcted tissue, leading to hemorrhagic transformation [8]. With the successes reported for IVT with rtPA in stroke patients post dabigatran

Citation: Ogeleka P, Ibrahim TM (2022) The Use of Intravenous Tenecteplase in Acute Ischemic Stroke after Idarucizumab Reversal of Dabigatran Anticoagulant Effects; Experience from a Regional Hospital Directed by Video Telemedicine Stroke Specialist. J Clin Stud Med Case Rep 9: 0140.
reversal with Idarucizumab studies are needed to evaluate the use of rtPA in stroke patients on anti-activated factor X agents (apixaban,rivaroxaban and edoxaban) and reversal with Andexanet alfa which is recently approved by FDA as a reversal agent for apixaban and rivaroxaban [11]. Our patient's good outcome was not only credited to the IVT but also the early initiation of comprehensive stroke management and rehabilitation. Finally this study shows that stroke patients can be successfully thrombolyzed in regional and possibly rural hospitals with adequate facilities such as neuroimaging scans and access to high speed internet connection to facilitate telemedicine guidance and direction from a stroke specialist located in other institution.

Conclusion

This case report demonstrates a safe and effective IVT use after reversal of dabigatran effect using idarucizimab in a regional health facility. This treatment and comprehensive management lead to improved stroke outcomes.

References

1. The European Stroke Organisation (2021) NOAC reversal before systemic thrombolysis in ischaemic stroke: 2021 ESO guidelines update. Basal, Switzerland.
2. Hankey G J, Norrving B, Hacke W, Steiner T (2014) Management of acute stroke in patients taking novel oral anticoagulants. Int J Stroke 5: 627-632.
3. MIMS Neurology (2021) NOAC reversal before systemic thrombolysis in ischaemic stroke: 2021 ESO guidelines update.
4. Australian Clinical Guidelines for Stroke Management - Chapter $3 \& 4$ of 8: Acute medical and surgical management, and secondary prevention Stroke Foundation Australia (2019).
5. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. (2019) Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 50: 344-418.
6. Kermer P, Eschenfelder CC, Diener HC, Grond M, Abdalla Y, Abraham A, et al. (2020) Antagonizing dabigatran by idarucizumab in cases of ischemic stroke or intracranial hemorrhage in Germany-Updated series of 120 cases. Int J Stroke 15: 609-618.
7. Frol S, Sagris D, Pretnar OJ, Šabovic M, Ntaios G (2021) Intravenous thrombolysis after dabigatran reversal by idarucizumab: A systematic review of the literature. Front Neurol 12: 666086.
8. Spronk E, Sykes G, Falcione S, Munsterman D, Joy T, et al. (2021) Hemorrhagic Transformation in Ischemic Stroke and the Role of Inflammation. Frontiers in Neurology 12: 1-15.
9. Seiffge DJ, Meinel T, Purrucker JC, Kaesmacher J, Fischer U, et al. (2021) Recanalisation therapies for acute ischaemic stroke in patients on direct oral anticoagulants.J Neurol Neurosurg Psychiatry 92: 534-541.
10. Chen B,Cheng Q, Yang K, Lyden PD (2010) Thrombin mediates severe neurovascular injury during ischemia. Stroke. 41: 2348-2352.
11. Siegal DM, Curnutte JT, Connolly SJ, Lu G, Conley PB, et al. (2015) Andexanet Alfa for the Reversal of Factor Xa Inhibitor Activity. N Engl J Med 373: 2413-2424.

HERALD

Advances In Industrial Biotechnology | ISSN: 2639-5665
Advances In Microbiology Research | ISSN: 2689-694X
Archives Of Surgery And Surgical Education \| ISSN: 2689-3126
Archives Of Urology
Archives Of Zoological Studies | ISSN: 2640-7779
Current Trends Medical And Biological Engineering
International Journal Of Case Reports And Therapeutic Studies | ISSN: 2689-310X
Journal Of Addiction \& Addictive Disorders | ISSN: 2578-7276
Journal Of Agronomy \& Agricultural Science | ISSN: 2689-8292
Journal Of AIDS Clinical Research \& STDs | ISSN: 2572-7370
Journal Of Alcoholism Drug Abuse \& Substance Dependence | ISSN: 2572-9594
Journal Of Allergy Disorders \& Therapy | ISSN: 2470-749X
Journal Of Alternative Complementary \& Integrative Medicine | ISSN: 2470-7562
Journal Of Alzheimers \& Neurodegenerative Diseases | ISSN: 2572-9608
Journal Of Anesthesia \& Clinical Care | ISSN: 2378-8879
Journal Of Angiology \& Vascular Surgery | ISSN: 2572-7397
Journal Of Animal Research \& Veterinary Science | ISSN: 2639-3751
Journal Of Aquaculture \& Fisheries | ISSN: 2576-5523
Journal Of Atmospheric \& Earth Sciences | ISSN: 2689-8780
Journal Of Biotech Research \& Biochemistry
Journal Of Brain \& Neuroscience Research
Journal Of Cancer Biology \& Treatment | ISSN: 2470-7546
Journal Of Cardiology Study \& Research | ISSN: 2640-768X
Journal Of Cell Biology \& Cell Metabolism | ISSN: 2381-1943
Journal Of Clinical Dermatology \& Therapy | ISSN: 2378-8771
Journal Of Clinical Immunology \& Immunotherapy | ISSN: 2378-8844
Journal Of Clinical Studies \& Medical Case Reports | ISSN: 2378-8801
Journal Of Community Medicine \& Public Health Care | ISSN: 2381-1978
Journal Of Cytology \& Tissue Biology | ISSN: 2378-9107
Journal Of Dairy Research \& Technology | ISSN: 2688-9315
Journal Of Dentistry Oral Health \& Cosmesis | ISSN: 2473-6783
Journal Of Diabetes \& Metabolic Disorders | ISSN: 2381-201X
Journal Of Emergency Medicine Trauma \& Surgical Care | ISSN: 2378-8798
Journal Of Environmental Science Current Research | ISSN: 2643-5020
Journal Of Food Science \& Nutrition | ISSN: 2470-1076
Journal Of Forensic Legal \& Investigative Sciences | ISSN: 2473-733X
Journal Of Gastroenterology \& Hepatology Research | ISSN: 2574-2566

Journal Of Genetics \& Genomic Sciences | ISSN: 2574-2485 Journal Of Gerontology \& Geriatric Medicine | ISSN: 2381-8662 Journal Of Hematology Blood Transfusion \& Disorders | ISSN: 2572-2999 Journal Of Hospice \& Palliative Medical Care Journal Of Human Endocrinology | ISSN: 2572-9640 Journal Of Infectious \& Non Infectious Diseases | ISSN: 2381-8654 Journal Of Internal Medicine \& Primary Healthcare | ISSN: 2574-2493 Journal Of Light \& Laser Current Trends

Journal Of Medicine Study \& Research | ISSN: 2639-5657
Journal Of Modern Chemical Sciences
Journal Of Nanotechnology Nanomedicine \& Nanobiotechnology | ISSN: 2381-2044 Journal Of Neonatology \& Clinical Pediatrics | ISSN: 2378-878X Journal Of Nephrology \& Renal Therapy | ISSN: 2473-7313

Journal Of Non Invasive Vascular Investigation | ISSN: 2572-7400
Journal Of Nuclear Medicine Radiology \& Radiation Therapy | ISSN: 2572-7419
Journal Of Obesity \& Weight Loss | ISSN: 2473-7372
Journal Of Ophthalmology \& Clinical Research | ISSN: 2378-8887
Journal Of Orthopedic Research \& Physiotherapy | ISSN: 2381-2052
Journal Of Otolaryngology Head \& Neck Surgery | ISSN: 2573-010X
Journal Of Pathology Clinical \& Medical Research
Journal Of Pharmacology Pharmaceutics \& Pharmacovigilance | ISSN: 2639-5649
Journal Of Physical Medicine Rehabilitation \& Disabilities | ISSN: 2381-8670
Journal Of Plant Science Current Research | ISSN: 2639-3743
Journal Of Practical \& Professional Nursing | ISSN: 2639-5681
Journal Of Protein Research \& Bioinformatics
Journal Of Psychiatry Depression \& Anxiety | ISSN: 2573-0150
Journal Of Pulmonary Medicine \& Respiratory Research | ISSN: 2573-0177
Journal Of Reproductive Medicine Gynaecology \& Obstetrics | ISSN: 2574-2574
Journal Of Stem Cells Research Development \& Therapy | ISSN: 2381-2060
Journal Of Surgery Current Trends \& Innovations | ISSN: 2578-7284
Journal Of Toxicology Current Research | ISSN: 2639-3735
Journal Of Translational Science And Research
Journal Of Vaccines Research \& Vaccination | ISSN: 2573-0193
Journal Of Virology \& Antivirals
Sports Medicine And Injury Care Journal | ISSN: 2689-8829
Trends In Anatomy \& Physiology | ISSN: 2640-7752

Submit Your Manuscript: https://www.heraldopenaccess.us/submit-manuscript

[^0]: *Corresponding author: Tunde Maiyaki Ibrahim, Department of Medicine, Goulburn Valley Health, Graham Street, Shepparton, Vic 3630, Australia, Email: imaiyaki@yahoo.com

 Citation: Ogeleka P, Ibrahim TM (2022) The Use of Intravenous Tenecteplase in Acute Ischemic Stroke after Idarucizumab Reversal of Dabigatran Anticoagulant Effects; Experience from a Regional Hospital Directed by Video Telemedicine Stroke Specialist. J Clin Stud Med Case Rep 9: 0140.

 Received: July 26, 2022; Accepted: August 05, 2022; Published: August 12, 2022

 Copyright: © 2022 Ogeleka P, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

