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Introduction
	 Cancerous cells usually show dependency on glycolysis and/
or glutaminolysis due to their high metabolic demand, which is re-
quired for their survival and rapid proliferation. The metabolic switch 
provides rapid energy and precursor molecules for the macromo-
lecular synthesis to the highly proliferative cancerous cells. This 
reprogrammed tumor cell metabolism produces H+ ions and acidic 
metabolites, which are transported outside the cell with the help of 
pH regulators, namely, MCTs, V-ATPase, CA, NHE and Cl-/HCO3- 
anion exchanger 2 [1,2]. The export of H+ ions and metabolic acids 
is essentially required for the survival of tumor cells, otherwise their 
accumulation will cause intracellular acidification which may lead to 
the death of tumor cells [1]. Therefore, the intracellular pH (pHi) of 
cancer cells is usually observed >7.4 which is higher than the pHi 
of normal cells (pHi of ~7.2) whereas a lower extracellular pH (pHe 
of ~ 6.7-7.1) as compare to normal cells (pHe of ~7.4). This reverse 
pH gradient supports cancer progression through several ways such 
as increased pHi of cancer cells inhibits tumor cell apoptosis while 
acidic pHe promotes immunosuppression, apoptosis of normal cells 
and invasion and metastasis of tumor cells [2]. Acidic tumor micro-
environment is usually observed in most of cancers, therefore, ‘tumor 
acidosis’ has been emerging as a hallmark feature of cancer [2-5]. 
Further, pH regulators along with metabolic enzymes such as lactate 
dehydrogenase play a critical role in the development of tumor acido-
sis.

	 MicroRNAs (miRNAs) are small non-coding RNAs, 18 to 25 nu-
cleotides in length, which play a crucial role in the regulation of gene 
expression at the post-transcriptional level via primarily binding with 
3′  untranslated region of mRNA transcribed from target genes either 
through mRNA degradation or inhibition of translation. miRNAs are 
reported to control various biological processes including develop-
ment, differentiation, proliferation and apoptosis [6-8]. Further, the 
role of altered expression of miRNAs is also reported in progression 
of various types of cancers including, prostate, thyroid, lung, gastric, 
pancreatic, colorectal and breast [9-15]. The alteration in the expres-
sion of miRNA in cancerous cells occurs either due to mutations, 
chromosomal alterations and promoter methylation or transcription 
factor activation [16]. The altered expression of miRNAs promotes 
cancer progression via modulating the expression of several key reg-
ulatory molecules which control various processes such as prolifer-
ation, survival, apoptosis, angiogenesis, and invasion and metasta-
sis [17,18]. The miRNA dysregulation in cancer was first observed 
through mapping of chromosome 13 in Chronic Lymphocytic Leuke-
mia (CLL) in 2002 [19]. In CLL, 13q14 region was found to be fre-
quently deleted in more than 50% of the cases which was further iden-
tified as a site for two miRNAs, miR-15 and miRNA-16 [19]. Further, 
these two miRNAs were identified as tumor suppressor genes due to 
their negative regulatory action on the expression of an antiapoptotic 
target, BCL2 [20]. A miRNA can be oncogenic in a tumor while tu-
mor suppressor in other tumors. For example, miR-29 has oncogenic 
function in breast cancer while tumor suppressive functions in lung 
cancer [21,22]. Emerging evidence indicate the role of miRNAs in the 
development and progression of cancer via modulating the expression 
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Abstract

	 Tumor acidosis, an ‘emerging hallmark’ of cancer, promotes un-
hindered progression of cancer by inducing invasion and metasta-
sis, immunosuppression, apoptosis of surrounding normal cells, and 
chemo and radio resistivity. pH regulator molecules such as Mono-
carboxylate Transporters (MCTs), V-type H+ ATPases (V-ATPase), 
Carbonic Anhydrase (CA), Na+/H+ Exchanger (NHE) and Cl-/HCO3- 
anion exchanger 2 play a critical role in maintaining the pH homeo-
stasis. pH homeostasis is essentially required for various cellular 
processes including cell proliferation, apoptosis and migration. Inter-
estingly, the expression and/or activity of pH regulators are usually 
found up-regulated in several cancerous cells to counteract the dele-
terious effect of intracellular acidification caused by huge production 
of acidic metabolites. microRNAs (miRNAs) are small non-coding 
RNAs which tightly control various cellular processes such as pro-
liferation, differentiation and apoptosis via directly or indirectly reg-
ulating the expression of various biological pathways. Therefore, a 
role of altered expression of various miRNAs involved in biological 
processes is reported in cancer progression. Recent reports indi-
cate the potent role of miRNAs in the regulation of tumor acidosis. 
miRNAs such as miR-34a, miR-24, miR-224 are reported to play a 
crucial role in cancer progression via regulating the expression of 
their target pH regulatory molecules CAIX, Cl-/HCO3- anion exchang-
er 1 and SLC4A4 (a Na+-coupled HCO−3 transporter), respective-
ly. Further, miR-34a, miR-34c, miR-34b/c, miR-369-3p, miR-374a, 
miR-4524a/b and miR-449a may play a key role in the regulation 
of tumor acidosis via targeting a crucial glycolytic emzyme, LDHA. 
This review discusses the contribution of miRNAs in the acidic tumor 
microenvironment.
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pattern of cell survival regulatory molecules such as p53, Bcl2, Myc, 
cyclins, CDKs and MDM2 [23,24]. Further, miRNAs such as miR-
21, miR-10b and miR-125 are implicated in providing the metastatic 
and invasive properties to cancerous cells [24]. Recently, the role of 
miRNAs has also been identified in the regulation of tumor acidosis. 
This review is an attempt to understand the role of miRNAs in the 
regulation of acidic tumor microenvironment.

microRNA Biogenesis and Mechanism of Action

	 The biogenesis of miRNA is basically two steps process which ini-
tially occurs in nucleus followed by cytoplasm. During this process, 
firstly, the miRNA gene is transcribed by RNA polymerase II to pri-
mary miRNA transcript which is further cleaved by a protein complex 
of RNase III endonuclease Drosha and DGCR8 into an ~60 - 70 bp 
hairpin intermediate form called as precursor miRNA (pre-miRNA) 
in the nucleus. This precursor miRNA is transported by exportin 5 
from nucleus to cytoplasm where it is further processed by TRBP-as-
sociated Dicer to mature double stranded miRNA duplex, ~22 nucleo-
tides in length. Mature miRNA duplex is double stranded structure of 
passenger and guide strand of miRNA. Argonaute (AGO2) protein, an 
important component of RISC unwinds the miRNA duplex and pro-
motes incorporation of guide strand into the RISC; this newly formed 
complex is known as miRNA-associated RNA-induced silencing 
complex (miRISC). Further, miRNA-associate RISC targets mRNAs 
for silencing either via RNA degradation or translational inhibition 
depending on the complementarity between the miRNA and the tar-
geted mRNA (Figure 1) [25].

microRNAs and Cellular pH Regulatory Molecules
	 A number of evidence indicates the involvement of several miR-
NAs in the regulation of pH homeostasis via controlling the expres-
sion of various pH regulatory and acid metabolite generating mole-
cules during pathological and non-pathological conditions (Table 1).  

Further, miRNAs regulate the expression of pH regulatory molecules 
directly or indirectly through modulating the expression of their tran-
scription factors. There are only few reports which indicate the role of 
miRNAs in the regulation of pH regulators and acid metabolite gener-
ating molecules. However, very little information is known about the 
contribution of known pH regulatory miRNAs in cancer progression 
and tumor acidosis (Figure 2).

pH regulators/
Enzymes Physiological role miRNA References

Monocarboxylate 
Transporter (MCT1)

Transport of L-lactate, pyruvate 
and ketone bodies, maintenance 

of pH homeostasis

miR-124
miR-29a
miR-29b

[26]

Lactate dehydroge-
nase A

Reduction of Pyruvate into 
L-Lactate and Regeneration of 

NAD+ from NADH

miR-34a,
miR-34c,

miR-34b/c,
miR-369-3p
miR-374a

miR-4524a/b, 
miR-449a

[27-29]

Carbonic anhydrase 
IX

Reversible hydration of car-
bondioxide to bicarbonate and 
a proton, maintenance of pH 
homeostasis, water and ionic 

equilibrium

miR-34a,
miR-210 [30-32]

V-ATPase

Proton transportation, recep-
tor-mediated endocytosis, 

intracellular membrane traffic, 
pro-hormone processing, bone 

resorption, renal pH homeostasis 
and sperm maturation

miR-637
miR-1 [30,33]

Bicarbonate 
transporters (Such 

as AE1, AE2, 
SLC26A3 and 

SLC4A4)

Transportation of HCO3
− across 

the plasma membranes, removal 
of waste CO2, regulation of pH 

homeostasis, fluid movement and 
acid/base secretion

miR-24,
miR-506,
miR-494,
miR-224

[34-37]

Na+/H+ exchanger 
(NHE1)

Regulation of pH homeosta-
sis, cell volume, cytoskeletal 

organization and cell growth and 
proliferation

miR-185 [38]

Table 1: miRNA-mediated regulation of pH regulatory and acidic metabolite produc-
ing molecules.

Figure 1: Biogenesis of miRNA and its action.

Precursor miRNA is generated from primary miRNA in the nucleus by the help of 
RNase III enzyme Drosha and its interacting partner DGCR8. Further, precursor miR-
NA is translocated to the cytoplasm by the help of exportin 5 and converted to mature 
duplex miRNA by Dicer in association with TRBP. RISC binds to single strand mature 
miRNA and further miRNA-RISC complex causes mRNA degradation and transla-
tion inhibition through interacting with its target sequences.

Figure 2: Regulation of pH regulators and acidic metabolite generating molecules by 
miRNAs. The expression of MCT1, LDHA, CAIX, V-ATPase, bicarbonate transport-
ers and NHE1 is directly or indirectly regulated by several miRNAs.
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Monocarboxylate Transporter and Their Regula-
tion by miRNAs
	 Monocarboxylate transporters belong to the solute carrier 16 gene 
family, consisting of 14 members. Out of fourteen, four members 
of MCTs, MCT1, MCT2, MCT3 and MCT4 are mainly involved in 
the proton-linked transport of monocarboxylate metabolites such as 
L-lactate, pyruvate and the ketone bodies across the plasma mem-
brane. They play a key role in the regulation of pH homeostasis in 
cancerous cells by exporting excess lactate, produced as an end prod-
uct of glycolysis, outside the cell. Therefore, MCT1 - 4 play a crucial 
role in the development and progression of cancer by two ways, in-
creasing intracellular pH (pHi) of cancerous cells and creating tumor 
supporting acidic microenvironment by lowering the extracellular pH 
(pHe) [2,3,39,40]. The expression of MCT1, MCT2 and MCT4 are 
found elevated in several cancers like colon, breast and lung [41]. Re-
cently, several studies have indicated that miRNAs tightly control the 
expression of monocarboxylate transporters. In cancer, a down-reg-
ulated expression of MCT regulatory miRNAs has been observed 
which lead to a higher expression of MCT and thus promote tumor 
acidosis. In an investigation, Pullen et al., identified MCT1 as a poten-
tial target of miR-124, miR-29a and miR-29b in pancreatic beta cell 
[26]. These miRNAs inhibit the expression of MCT1 by binding to 3’ 
UTR of human and mouse MCT1. The report suggested MCT1 as a 
direct target of these miRNAs because the inhibitory effects of these 
miRNAs is abrogated via mutation of the cognate miR-29 or miR-
124 binding sites. Out of three, miR-124, and miR-29b function as 
tumor suppressor due to their ability to target cancer promoting genes 
[40-52]. However, miR-29a differentially regulates cancer progres-
sion depending on their tissue origin [43,53-57]. However, there is no 
report which suggests the role of miR-124, miR-29a and miR-29b in 
tumor acidosis. Therefore, studies are needed to establish their role in 
tumor acidosis.

Role of miRNAs in Lactate Dehydrogenase A Reg-
ulation
	 Cancer cells show many types of metabolic adaptations which 
help them in proliferation, survival and invasion and metastasis. One 
of the metabolic adaptations is glycolytic switch; cancerous cells usu-
ally switch their metabolism from oxidative phosphorylation to gly-
colysis as glycolysis is the bioenergetic source along with provider 
of intermediate molecules of macromolecular synthesis for rapidly 
dividing cells [58,59]. Thus, they generate a large amount of lactate, 
as an end product of glycolysis by the help of Lactate Dehydrogenase 
(LDH) in a reversible manner. Further, lactate is passively exported 
out of the cells with help of MCTs as its intracellular accumulation 
can lead to intracellular acidification which is fatal for their survival 
[60,61]. The extruded lactate promotes cancer progression via caus-
ing acidosis, promoting angiogenesis and immunosuppression, and 
supplying metabolic fuel to oxidative tumor cells [62,63]. LDH is 
a tetrameric enzyme composed of two major subunits, A and/or B, 
which are encoded by Ldh-A and Ldh-B, respectively. LDHA has a 
higher affinity for pyruvate than LDHB and thus more efficiently cat-
alyzes the conversion of pyruvate into lactate whereas LDHB catalyz-
es the conversion of lactate to pyruvate. An up-regulated expression 
of LDHA is frequently observed in various cancers [64,65]. Several 
recent studies have suggested the potential role of miRNAs in the reg-
ulation of tumorigenesis through modulation of metabolism includ-
ing carbohydrate, lipid and amino acid metabolism [66,67]. Several 

miRNAs such as miR-375, miR-143, miR-14 and miR-29b play a 
crucial role in the altered cancer cell metabolism through modulating 
the expression of various genes which directly or indirectly modulate 
the expression of enzymes of metabolic pathways [66]. But, there are 
only few studies which report the regulation of LDH via miRNAs. 
These studies suggest that miR-34a, miR-34c, miR-34b/c, miR-369-
3p, miR-374a, miR-4524a/b and miR-449a regulate glycolysis in can-
cer cells by targeting LDHA [27-29]. Wang et al., cloned the 3′  UTR 
of LDHA gene into a dual-luciferase UTR vector and observed that 
miR-34a and miR-34c along with other miRNAs such as miR-369-
3p, miR-374a and miR-452 a/b binds to the 3′ UTR of LDHA and in-
hibited LDHA [27]. They have also confirmed that LDHA is the main 
target of miR-34a and miR-34c by comparing the expression level 
of 22 target genes of miR-34 in colorectal and pancreatic cancer cell 
lines. Further, miR-34a is also involved in the regulation of glycolysis 
and tumor growth metabolism in breast cancer [29]. Moreover, Xiao 
et al., has also identified LDHA as a key target for miR-34a by per-
forming luciferase reporter assay [29].

Regulation of Carbonic Anhydrase by miRNAs
	 Carbonic anhydrase (CA) is a zinc containing metaloenzyme 
which catalyzes the reversible hydration of carbondioxide to bicar-
bonate and a proton (CO2 + H2O↔H+ + HCO3

-). It plays an import-
ant role in the maintenance of pH homeostasis, water and ionic equi-
librium. There are 14 isoforms of human CA. They show variations 
in their activity, tissue distribution, and cellular and subcellular lo-
calization [68]. Further, the isoforms of CA are mainly classified into 
four categories, namely cytosolic (CAs I, II, III, VII); membrane as-
sociated (CAs IV, IX, XII, XIV); mitochondrial (CAV); and secreted 
(CAVI) isoenzymes [68]. Reports indicate that membrane associated 
CA isoforms, namely CAIX and CAXII are involved in the tumor 
progression [33,68].

	 Recent evidence suggests that miRNAs directly or indirectly reg-
ulate the expression of CAIX [30-32]. It has been reported that CAIX 
is a direct target of miR-34a and thus 3′ UTR polymorphism of CAIX 
play a critical role in the regulation of CAIX expression and cancer 
progression as it affects the targeting efficiency of miR-34a [30,31]. 
Further, the expression of CAIX is also indirectly regulated via hy-
poxia-induced miR-210 as CAIX is a HIF-1α target gene [32,69]. But 
there is no evidence which suggests the miRNA-mediated regulation 
of CAXII.

miRNA-mediated Regulation of V-ATPase
	 V-ATPase belongs to ATP-dependent proton pump family and ba-
sically present on the membrane of cellular organelles like endosome, 
lysosome and a variety of vesicles. Moreover, V-ATPase is also local-
ized on the plasma membrane of some cells such as osteoclasts [70]. 
V-ATPase transports proton either into intracellular compartments or 
across the plasma membrane depending on their localization and thus 
maintains a relatively neutral intracellular pH, an acidic luminal pH 
and an acidic extracellular pH [71]. It is a large, multi-subunit com-
plex made up of integral VO and peripheral V1

 domains. VO is com-
posed of five subunits (a,c,c”,d,e) and is responsible for proton trans-
location whereas V1 is composed of eight subunit (A- H) and contains 
catalytic core which hydrolyses ATP [72]. Intracellular V-ATPases 
regulates various cellular processes including receptor-mediated 
endocytosis, intracellular membrane traffic, pro-hormone process-
ing, protein degradation and the coupled uptake of small molecules, 
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such as neurotransmitters. However, plasma membrane-associated 
V-ATPases play a key role in physiological processes such as bone 
resorption, renal pH homeostasis and sperm maturation [70]. Further, 
plasma membrane-associated V-ATPases are also involved in the de-
velopment of various diseases including renal tubular acidosis, and 
osteoporosis promoting function, and tumor metastasis and invasion 
[70]. Moreover, an up-regulated expression of plasma membrane-as-
sociated V-ATPase has been observed in various invasive cancers 
like breast, lung, liver, prostate and pancreatic cancers [72-74]. There 
is only one study which suggests that miR-1 and miR-637 may be 
involved in the regulation of V-ATPase expression based on the se-
quence-specific prediction [75,76]. Therefore, wet-lab experiments 
are needed to validate this prediction.

Regulation of Bicarbonate Transporters and Na+/
H+ Exchanger by miRNAs
	 Apart from MCT, CAIX, LDH and V-ATPase regulation by 
miRNAs, the expression of other pH regulators such as bicarbon-
ate transporters (namely, Cl−/HCO−

3  exchangers and Na+-coupled 
HCO−

3 transporters) and Na+/H+ exchanger is also tightly controlled 
by miRNAs. Bicarbonate transporters facilitate the movement of 
HCO3

− across the plasma membranes. They help the removal of waste 
CO2 and play an important role in the regulation of pH homeostasis, 
fluid movement and acid/base secretion [77]. An investigation by Wu 
et al., indicates the regulation of Cl-/HCO3

- anion exchanger 1 (AE-1) 
expression by miR-24 in the gastric carcinogenesis [34]. Further, the 
expression of Cl-/HCO3

- Anion Exchanger 2 (AE2) is found to be reg-
ulated by miR-506 and thus alteration in the expression of miR-506 
is associated with primary biliary cirrhosis [35]. MiR-506 inhibits 
the expression of Cl-/HCO3

- Anion Exchanger 2 (AE2) by binding to 
3′ UTR region of AE2 mRNA and inhibiting its expression at trans-
lational level [35]. Further, the expression of another Cl-/HCO3

- ex-
changer, SLC26A3, is found to be dependent on the level of miR-494 
in intestinal epithelial cells [36]. Moreover, a role of down regulated 
expression of miR-224 is observed in the development of methotrex-
ate-resistant colorectal cancer via relaxing its inhibitory action on 
SLC4A4 (NBCe1), a Na+-coupled HCO-3 transporter [37]. Therefore, 
miRNAs also play a vital role in the regulation of bicarbonate trans-
porters. Further, several reports indicate an altered expression of bi-
carbonate transporters such as AE1, AE2, SLC26A3 and SLC4A4 in 
various cancers including hepatocellular carcinoma, colorectal, breast 
and gastric cancers [78-83]. Thus, miRNAs targeting the bicarbonate 
transporters may be future potential therapeutic targets for various 
cancers.

	 Na+/H+ exchanger controls numerous physiological processes 
such as pH homeostasis, cell volume, cytoskeletal organization and 
cell growth and proliferation [84,85]. A recent study by Kim et al., 
suggests the miRNA-mediated regulation of NHE-1 via miR-185 
[38]. In this investigation, they showed that miR-185 protects endo-
plasmic reticulum stress induced apoptosis in cardiomyocytes by di-
rectly targeting the 3′ -untranslated region of NHE-1. Moreover, the 
role of NHE-1 is reported in the progression of various cancers via 
cellular transformation, and invasion and metastasis [86,87].

Conclusion
	 miRNAs play a crucial role in the regulation of pH homeostasis 
through controlling the expression of pH regulators. In cancer, pH 

regulators and metabolic acid generating molecules (such as lactate 
dehydrogenase) are the main culprit for the creation of tumor acidic 
microenvironment. Tumor acidosis favors cancer progression through 
modulating several crucial parameters such as cell survival, apopto-
sis, immunosuppression, invasion and metastasis. Thus, tumor acido-
sis is one of the key regulatory players of tumor progression. There-
fore, miRNAs targeting pH regulatory and metabolic acid generating 
molecules could be exploited as diagnostic tool or future therapeutic 
targets for various cancers. But, more studies are still required to ex-
plore the role of miRNAs targeting pH regulators in tumor acidosis, 
whose role is known in normal cells.
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