

HSOA Journal of Angiology & Vascular Surgery

Brief Short Reports

Endochemical Venous Ablation with Foam Prepared with Pure Oxigen, Excellent and Easy Alternative

Fernando Vega Rasgado^{1,2,3*}, Felipe Rendón^{1,2}, Eugenio Jiménez¹, Lourdes Amable Vega Rasgado^{2,4}, Víctor Carmona³, Italia Robles³ and Gloria Reyes³

¹Department of General Surgery, Instituto Mexicano de Flebología, Ciudad de México, México

²Department of General Surgery, Colegio de Medicos Cirujanos J.R. Tournay, México

³Department of General Surgery, Clínica de Varices y Ulceras de México, Ciudad de México, México

⁴Department of Biochemistry, Environmental Systems Engineering-ENCB-IPN, Ciudad de México, México

Abstract

Sclerotherapy with Polidocanol Foam prepared with room air causes some side effects which can become dangerous. In order to decrease or even avoid such adverse effects, the Foam with pure oxygen was prepared. The study was approved by the ethics committee, with the informed consent of the patients. The sclerotherapy was made with polidocanol Foam prepared with the gas-liquid proportion of Tessari's method. Two groups were formed, one was treated with polidocanol-room air foam and the other with polidocanol-oxygen foam, which used pure oxygen (O_2) n instead Room air (Ra). No special exclusion criteria between groups.

Results: Patients = 1300, adverse effects: Cough $(0.15\% O_2, 3.7\% Ra)$, Dizziness and migraine $(0\%, O_2, 0.53\% Ra)$, Visual disturbances $(0\%, O_2, 0.13\% Ra)$, Back pain $(0\%, O_2, 0.73\% Ra)$. The effectiveness of treatment was the same in both groups, but the Foam prepared with oxygen had better performance. Although Dr.Frullini has demonstrated that endothelin is the cause of the neurologic side effects, the use of physiological gases can prevent most of the undesirable's effects of the sclerosing Foam. In conclusion, Foam sclerotherapy performed with Oxygen is a good option to reduce or even prevent adverse effects of polidocanol, easy to performance and with better stability in the Foam.

*Corresponding author: Fernando Vega Rasgado, Department of General Surgery, Instituto Mexicano de Flebología, Ciudad de México, México, Tel: + 81 83467800; + 81 834 88305; E-mail: imf_fer@hotmail.com

Citation: Rasgado FV, Rendón F, Jiménez E, Rasgado LAV, Carmona V, et al. (2019) Endochemical Venous Ablation with Foam Prepared with Pure Oxigen, Excellent and Easy Alternative. J Angiol Vasc Surg 4: 025.

 $\textbf{Received:} \ June\ 20,\ 2019; \textbf{Accepted:} \ July\ 29,\ 2019; \textbf{Published:} \ August\ 05,\ 2019$

Copyright: © 2019 Rasgado FV, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

Sclerotherapy is a technique that has rapidly spread throughout the world, especially because it is ease and economic [1]. Liquid sclerosis has been reserved for telangiectasias and reticular veins whereas that FOAM has become more important for large trunks [2]. The study of sclerosis with FOAM has extended not only for the quality of the sclerosant agent but also because of the way that bubbles interact with the venous endothelium. The formula $TP = \frac{1}{4} r2 d / 2D Sf$ (where **TP** is the time of persistence of the bubbles, \mathbf{r} the radius of the microbubbles, d the density of the gas inside the microbubble, D the diffusibility of the gas through the membrane of the microbubbles and Sf the saturation factor of the gas in the blood, summarizes the most important factors that interfere with the time of the bubbles stability [3]. Sclerotherapy may require several sessions, especially when there is an abundance of telangiectasias in legs and thighs, therefore the application of high volumes would be necessary. CO₂ bubbles are 50 times more diffusible than nitrogen bubbles through the endothelium of the venous capillary and the membrane, thus the use of CO, provides greater diffusion in the blood compared to oxygen. In another hand, the mixture of CO, and O, produces smaller bubbles. Experimental and clinical studies with polidocanol bubbles show a clear reduction of the size of the microbubbles with CO₂ but its half-life decreased significantly. When CO₂ and O₃ were combined, the average life of the bubbles increased markedly and the diameter decreased compared with room air [4]. In a study conducted by Dr. Nick Morrison, sclerosant Foam in volumes of 2 to 42 ml was injected, with an average of 17.5ml (± 7.8ml) for the mixture CO₂-O₂ and 17ml (± 9ml) for room air [5]. Dr. Morrison also reported on the use of CO, as the only gas to prepare the foam, succeeding in reducing the complications [6]. In 2009 we started a study on post-sclerotherapy complications using pure oxygen to prepare the polidocanol Foam reporting the first results at the Phlebology Congress in Mexico in 2010. We found that the concentrations and volumes used were to much higher than those we currently use. The results so far have been good [7].

Methods

From 2010 to 2017, 1,300 patients without distinction of sex or age were injected with oxygen Foam and were compared against 1,500 patients who were injected in the office with room air. Polidocanol foam in different concentrations using only pure oxygen as a gas was used prepared with the Tessari technique using a three-way stopcock (1ml of liquid and 4ml of oxygen) [8]. With this Foam different sizes of veins were injected from telangiectasias to saphenous trunks in different volumes. It was done in the operating room with monitoring of Electrocardiography, Oximetry and vital signs for high volumes. After the procedure, the patient was released to the recovery room where was monitored for 3 hours and then were discharged to home. The subsequent control visits were once a week, monthly and after a year. The side effects of polidocanol were evaluated and compared with those of patients injected under the similar conditions with room air. The study was approved by the ethics committee and was performed with the informed consent of the patients (Figure 1).

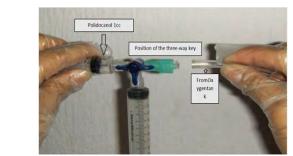


Figure 1: Way to connect the tube from the oxygen tank to prepare the foam.

Results

The sample general description is in tables 1,2. The FOAM prepared with pure oxygen was more stable than that prepared with room air and increased the duration of the bubbles, it was also a little brighter.

The side effects were practically eliminated and although at present it is not necessary, different volumes were applied having a maximum volume of 60 ml of Foam with average of 14ml.

The veins injected were the following:

	Oxygen gro	up (1,300)	Room air group (1,500)		
Age (mean)	54 years	(28-80 y)	60	(26-82 y)	
Male	32%	416 p	28%	418 p	
Female	68%	884 p	72%	1082 p	
Size	1.6 m	1.43-1.72	1.56 m	1.40-1.83	
Weight	71 Kg	43-120	75 Kg	45-125	
Right	68 %	884 legs	58.4%	876 p	
Left	76 %	988 legs	41.6%	624 p	
Volume (mean)	14 ml	3-60 ml	2.8 ml	1-15 ml	
Concentration (mean)	1.5%	(0.5-3)%	1.5%	(0.5-3)%	

Table 1: General description of the population.

In the Oxygen group there were no side effects, in the room air group there were minor side effects. The effectiveness of the treatment was the same in both groups. We had not secondary neurological effects (Table 3).

Discussion

For a period the enthusiasm for applying high volumes was generalized, but in recent years this has changed since some neurological problems derived from sclerosing injection have been reported [9,10]. Minor effects have also been reported and studied such as visual disturbances without attributing the effect to the gas used but to the vasoconstrictor effect of endothelin [11]. The stability of the Foam is very good with mixed CO_2 and O_2 , Dr. Morrison reported a decrease of side effects using CO_3 to prepare the sclerosing Foam [5].

Dr. Frullini and Cols. demonstrated that endothelin is the cause of neurological side effects [12]. We know that the use of physiological gases reduces significantly the side effects, which may be due to some special interaction of nitrogen with the endothelium, which does not occur when CO₂ or Oxygen is used [13]. Especially the prevention of neurological effects justifies the use of oxygen as a way to prevent easily these events. Beckitt et al. used a mixture of O₂ and CO₃ foam with physiological gases to prevent effects such as thrombophlebitis [14]. Although our series are small we must continue the use of physiological gases to prepare foam. It is believed that oxygen is more accessible than CO2, since it is a gas commonly used in doctors' offices and hospitals. Likewise the Central Nervous System works better with Oxygen than with CO, and if there are bubbles in some important area, it could be a factor for having or not neurological effects due to transient hypoxia. The duration of the foam with Oxygen is greater than with room air and it is an advantage when working with endovenous chemical ablation (sclerotherapy). More research is needed, although there is sufficient evidence that physiological gases are better than ambient air [15].

Conclusion

Sclerotherapy with Foam prepared with O_2 is a good alternative ahead to prevent or diminish the adverse neurological effects and if necessary, allows the injection of large volumes of Foam with safety. This foam is easy to prepare in any medical office, is not expensive and offers longer duration in its stability for the treatment of sclerotherapy, so we strongly suggest its use.

Veins	Varicules	Magnus Saphena	Accessory saphena	Cockett I	Cockett II	Cockett III	Boyd	May perf.	Giacomini	Hunter
%	74	16	10	30	12	7.5	42	17	8	10
Patients	2,072	448	280	840	336	210	1,176	476	224	280

Table 2: Veins more frequently affected.

Side effects	Cough	Dizziness and migraine	Transient blindness	Back pain	Faiting	Patients
Room air	56 (3.7%)	8 (0.53%)	2 (0.13%)	11 (0.73%)	2 (0.13%)	1500 (100%)
Pure oxygen	2 (0.15%)	0	0	0	0	1300 (100%)

Table 3: Side effects after injection of polidocanol at different concentrations, Foam prepared with pure oxygen and room air with Tessari technique.

References

- 1. Alder G, Lees T (2015) Foam sclerotherapy. Phlebology 30: 18-23.
- Hamel-Desnos C, Allaert FA (2009) Liquid versus foam sclerotherapy. Phlebology 24: 240-246.
- Cavezzi A, Tessari L (2009) Foam sclerotherapy techniques: Different gases and methods of preparation, catheter versus direct injection. Phlebology 24: 247-251.
- Peterson JD, Goldman MP (2011) An investigation into the influence of various gases and concentrations of sclerosants on foam stability. Dermatol Surg 37: 12-17.
- Morrison N, Neuhardt DL (2009) Foam sclerotherapy: Cardiac and cerebral monitoring. Phlebology 24: 252-259.
- Morrison N, Neuhardt DL, Rogers CR, McEown J, Morrison T, et al. (2008) Comparisons of side effects using air and carbon dioxide foam for endovenous chemical ablation. J Vasc Surg 47: 830-836.
- Rasgado FV, Gallegos JS, Pastrana V, Ramirez C, Rasgado LAV, et al. (2018) Foam prepared with pure oxygen decrease adverse effects in sclero-therapy. Int Angiol 37: 6.
- Tessari L, Cavezzi A, Frullini A (2001) Preliminary experience with a new sclerosing foam in the treatment of varicose veins. Dermatol Surg 27: 58-60

- Parsi K (2012) Paradoxical embolism, stroke and sclerotherapy. Phlebology 27: 147-167.
- Bush RG, Derrick M, Manjoney D (2008) Major neurological events following foam sclerotherapy. Phlebology 23: 189-192.
- Gillet JL, Donnet A, Lausecker M, Guedes JM, Guex JJ, et al. (2010) Pathophysiology of visual disturbances occurring after foam sclerotherapy. Phlebology 25: 261-266.
- Frullini A, Felice F, Burchielli S, Di Stefano R (2011) High production of endothelin after foam sclerotherapy: A new pathogenetic hypothesis for neurological and visual disturbances after sclerotherapy. Phlebology 26: 203-208.
- 13. Gutierrez LR (2018) How to prevent complications and side effects from sclerotherapy of the lower limb veins. Phlebolymphology 25: 137-153.
- Beckitt T, Elstone A, Ashley S (2011) Air versus physiological gas for ultrasound guided foam sclerotherapy treatment of varicose veins. Eur J Vasc Endovasc Surg 42: 115-119.
- 15. Wong M (2015) Should foam made with physiologic gases be the standard in sclerotherapy? Phlebology 30: 580-586.

Journal of Anesthesia & Clinical Care Journal of Genetics & Genomic Sciences

Journal of Addiction & Addictive Disorders Journal of Hematology, Blood Transfusion & Disorders

Advances in Microbiology Research Journal of Human Endocrinology

Advances in Industrial Biotechnology Journal of Hospice & Palliative Medical Care

Journal of Agronomy & Agricultural Science Journal of Internal Medicine & Primary Healthcare

Journal of AIDS Clinical Research & STDs Journal of Infectious & Non Infectious Diseases

Journal of Alcoholism, Drug Abuse & Substance Dependence Journal of Light & Laser: Current Trends

Journal of Allergy Disorders & Therapy Journal of Modern Chemical Sciences

Journal of Alternative, Complementary & Integrative Medicine Journal of Medicine: Study & Research

Journal of Alzheimer's & Neurodegenerative Diseases Journal of Nanotechnology: Nanomedicine & Nanobiotechnology

Journal of Angiology & Vascular Surgery Journal of Neonatology & Clinical Pediatrics

Journal of Animal Research & Veterinary Science Journal of Nephrology & Renal Therapy

Archives of Zoological Studies Journal of Non Invasive Vascular Investigation

Archives of Urology Journal of Nuclear Medicine, Radiology & Radiation Therapy

Journal of Atmospheric & Earth-Sciences Journal of Obesity & Weight Loss

Journal of Brain & Neuroscience Research

Journal of Diabetes & Metabolic Disorders

Journal of Aquaculture & Fisheries Journal of Orthopedic Research & Physiotherapy

Journal of Biotech Research & Biochemistry Journal of Otolaryngology, Head & Neck Surgery

Journal of Protein Research & Bioinformatics Journal of Cancer Biology & Treatment Journal of Pathology Clinical & Medical Research

Journal of Cardiology: Study & Research Journal of Pharmacology, Pharmaceutics & Pharmacovigilance

Journal of Cell Biology & Cell Metabolism Journal of Physical Medicine, Rehabilitation & Disabilities

Journal of Clinical Dermatology & Therapy Journal of Plant Science: Current Research

Journal of Clinical Immunology & Immunotherapy Journal of Psychiatry, Depression & Anxiety

Journal of Clinical Studies & Medical Case Reports Journal of Pulmonary Medicine & Respiratory Research

Journal of Community Medicine & Public Health Care Journal of Practical & Professional Nursing

Current Trends: Medical & Biological Engineering Journal of Reproductive Medicine, Gynaecology & Obstetrics

Journal of Toxicology: Current Research

Journal of Cytology & Tissue Biology Journal of Stem Cells Research, Development & Therapy

Journal of Dentistry: Oral Health & Cosmesis Journal of Surgery: Current Trends & Innovations

Journal of Dairy Research & Technology Journal of Translational Science and Research

Journal of Emergency Medicine Trauma & Surgical Care Trends in Anatomy & Physiology

Journal of Environmental Science: Current Research Journal of Vaccines Research & Vaccination

Journal of Food Science & Nutrition Journal of Virology & Antivirals

Journal of Forensic, Legal & Investigative Sciences Archives of Surgery and Surgical Education Journal of Gastroenterology & Hepatology Research Sports Medicine and Injury Care Journal

Journal of Gerontology & Geriatric Medicine International Journal of Case Reports and Therapeutic Studies

Submit Your Manuscript: http://www.heraldopenaccess.us/Online-Submission.php