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Significance
	 Our lab developed a neurovascular unit model that is comprised 
of only human cells, which better represents human brain physiology 
in a more rapid and scalable design than current in vitro and in vivo 
models. The incorporation of essential components of the neurovas-
cular unit - endothelial cells, pericytes, astrocytes, microglia, oligo-
dendrocytes and neurons - mean that the model can be used not only 
to study the BBB mechanisms and functions, but also to evaluate the 
effect of drugs that cross the BBB on other human brain cell types 
within the NVU. This work can, therefore, assist in the validation of 
central nervous system safety of candidate molecules designed for 
both neurological and non-neurological diseases. The model may also 
provide a platform for evaluating neurodegenerative disease biomark-
ers and possibly disease pathologies with proper organoid maturation.

Background 
	 In the Unites States alone, 45 million people are affected by one 
of the 12 most prevalent neurologic disorders, while over one million 
adults are newly diagnosed with brain diseases or disorders [1]. Yet, 
there are limited treatment options, resulting in significant economic 
and social costs. For example, the Alzheimer’s Association reported 
that in 2016 alone, the national cost for Alzheimer’s and other demen-
tias was approximately $236 billion [2]. The discovery of effective 
therapies has been limited by the low success rate of investigational 
drug trials, which in part is due to the lack of human brain-equivalent 
models [3]. The development of in vitro models that closely mimic 
human brain tissue remains a challenge. Current two- and three-di-
mensional tissue culture methods that have been described in drug 
screening and disease models, in addition to current animal models, 
do not mimic human physiology because they either consist of animal 
cells or do not contain all the necessary components that are critical 
to the normal function of the human neurovascular unit (NVU)[4-18]. 
Some models also utilize extracellular matrix (ECM) components or 
artificial, though biocompatible, membranes that are not present in 
the adult brain. This makes it more challenging to translate the results 
from these models to human disease applications. Here, we describe 
a model that incorporate six cell types found within the human brain 
cortex and we highlight their respective roles in maintaining normal 
function of the NVU by regulating blood-brain barrier (BBB) integ-
rity. The six cell types discussed below are: human brain microvas-
cular endothelial cells (HBMVEC), human pericytes (HBVP), human 
astrocytes (HA), human microglia (HM), human oligodendrocytes 
(HO), and human neurons (HN). We will also discuss the contribu-
tion of the extracellular matrix to the basement membrane and to the 
BBB integrity that is central to normal function of the NVU. We will 
briefly discuss BBB dysfunction in a few neurological disorders to 
highlight the value of incorporating the above-named components in 
understanding their impact in creating a dynamic disease model. We 
will conclude with a brief description and perspectives on the signifi-
cance of the findings from a model developed in our lab.
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Abstract

	 The lack of in vitro human brain equivalent models with functional 
neurons and other supporting cell types of the human cortex im-
pedes scientific understanding of neurologic disease progression 
and has significantly limited drug development. These cell types 
(astrocytes, microglia, oligodendrocytes, neurons, pericytes, and mi-
crovascular endothelial cells) interact in concert to form a tissue unit 
termed the neurovascular unit (NVU). Critical to the normal function 
of the NVU is the formation and maturation of a Blood Brain Barrier 
(BBB) which is one of the primary barriers for CNS targeting investi-
gational drugs. Understanding these cellular interactions is essential 
to the development of drugs to treat a wide array of diseases and 
neurological disorders. Current two- and three-dimensional in vitro 
models, in addition to in vivo animal models, often fail to mimic the 
physiological properties of the human NVU because most contain 
cells of varying species that do not accurately model human brain 
physiology. In addition, they contain synthetic components not repre-
sentative of the environment within the human cortex. We hereby de-
scribe the fundamental components of the neurovascular unit neces-
sary for developing complex and dynamic in vitro models that could 
be implemented in pre-clinical studies and disease modeling. We 
emphasize the importance of human-derived brain cells for transla-
tional relevancy. We hope that the inclusion of these components will 
overcome some of the limitations of current 2D in vitro models and 
may have applications in drug discovery and neurotoxicity testing.
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Current in vivo and in vitro models

	 The use of animal models and in vitro models consisting of rodent 
cells fails to acknowledge the lack genetic correlation between hu-
mans and rodents [19]. Even though two-dimensional in vitro co-cul-
ture systems provide a platform for studying the interaction of cells, 
and the formation and some functions of the blood brain barrier [9], 
animal or human cells in two dimensional platforms still do not re-
capitulate the three-dimensional microenvironment within the human 
NVU. 

Cell type limitations in current models

	 The number of different cell types that can be used in co-culture 
models while maintaining specific cell localization is limited in two 
dimensional systems. Critical to the maintenance of the blood brain 
barrier in NVU is the interaction between all six cell types in our 
model. Tight and adherens junction protein formation between adja-
cent human brain microvascular endothelial cells (HBMVEC) plays 
a central role in regulating transport of nutrients into the brain tissue. 
Brain derived neurotrophic factor secreted by HBMVECs support 
proliferation and survival of oligodendrocytes in the NVU [20]. The 
endothelial cells release platelet-derived growth factor (PDGF) to re-
cruit pericytes, which in turn produce ECM necessary for the forma-
tion of the basement membrane. Additionally, it is well known that 
pericytes cover approximately 30% of the neuro-microvasculature 
and play a role in contractile function [21], microvasculature matura-
tion [22] and collagen production [23]. The association of pericytes to 
blood vessels has also been suggested to regulate endothelial cell pro-
liferation, migration, differentiation, survival, and vascular branching 
[24]. This illustrates their direct interaction with endothelial cells and 
their crucial role in maintaining the integrity of the BBB in the NVU 
[25,26]. Glial and neuronal cells induce the BBB by upregulating 
membrane associated enzymes [27-29]. Yet some models only consist 
of endothelial cells and neurons [30]. Often, models that incorporate 
neurons do not include oligodendrocytes that are crucial for neuronal 
network function and for myelination [31,32]. Those models ignore 
the importance of myelination in normal impulse conduction. More-
over, the interaction between astrocytes and oligodendrocytes is well 
documented [31], and astrocytes are known to influence the integrity 
of the BBB [33-35]. More importantly, oligodendrocytes are known 
to secret transforming growth factor beta (TGF-β), a factor known 
to promote BBB integrity through the activation of the MEK/ERK 
pathway, which consequently upregulates expression of tight junction 
proteins [36]. A significant body of evidence exists, both in vitro and 
in vivo, describing the astrocyte interaction with the cerebral endo-
thelium and the mechanism by which this helps determine BBB func-
tion, morphology (i.e. tightness), and protein expression [28,37-39]. 
This dynamic interaction between cell types is crucial for the normal 
function of a NVU. A detailed look at the contribution of each of the 
cellular components and other components to the normal function of 
the NVU in the context of the blood brain barrier is outlined below.

Neurovascular unit

	 A brain tissue unit consisting of endothelial cells, pericytes, as-
trocytes, microglia, oligodendrocytes, neurons, and extracellular ma-
trix components that make up the basement membrane is known as 
the neurovascular unit (NVU) [40]. Neurovascular coupling within 
the NVU represents the interaction between neurons and the vas-
cular supply that provides them with necessary nutrients for proper 

neuronal function. The brain is dependent on constant blood supply. 
A healthy connection between neurons and the blood supply is crit-
ical for proper regulation of signals that control vascular changes. 
Neurovascular unit dysfunction that leads to an unmatched metabolic 
requirements in parenchymal tissue is evident in many pathological 
conditions including hypertension, Alzheimer’s disease, and ischemic 
stroke [41]. As shown in Figure 1, the position of astrocytes within the 
neurovascular unit is critical and unique for neurovascular coupling. 
Theoretical evidence suggests astrocytes contribute to functional hy-
peremia by shunting vasoactive stimuli from neuronal synapses to the 
astrocytic end feet that connects with the blood vessels [41]. Further-
more, the neuronal isoform of nitric oxide synthase produces a vaso-
dilator that is linked to increase in cerebral blood flow [42-44]. These 
close interactions between neurons, glia and vascular cells defines 
and determines the normal functions of the NVU.

The blood-brain barrier

	 Critical to the normal function of the neurovascular unit is the 
blood-brain barrier (BBB). It consists of a structurally organized en-
dothelial cell lining that interacts with pericytes, astrocytes and the 
basement membrane to shield parenchymal brain tissue from toxins 
and pathogens while allowing specific nutrients to pass and providing 
a chemical composition for proper glial and neuronal function [45-
51]. The delivery of essential nutrients such as oxygen and glucose, 
the removal of metabolic wastes, and the mediation of signaling of 
the endocrine glands is regulated at the BBB level [51-54]. (Figure 2)
below depicts pathways by which different substances cross the BBB 
(steps 1-6). The figure also highlights the interaction between cells of 
the BBB with other brain cells. The specific functions of each of the 
components of the neurovascular unit with respect to the BBB are 
discussed below.

Functions of Neurovascular Unit Components
Human brain microvascular endothelial cells

	 Brain endothelial cells have several peculiar properties that they 
do not share with peripheral endothelial cells. Brain endothelial cells 
receive and send signals to neighboring brain cells to enhance barrier 
properties as shown in Figure 3. Some of these properties include 
the lack of fenestrations, reduced transcytosis, and increased expres-
sion of specialized junctional proteins that limit paracellular transport 
 

Figure 1: Structural and cellular composition of the neurovascular unit. 
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between the luminal and the abluminal compartments. The junctional 
proteins include complexes of transmembrane proteins such as clau-
dins, occludin and junctional adhesion molecules.

	 BBB properties exhibited by brain endothelial cells is mainly con-
trolled by tight junctions containing junctional adhesion molecules 
arranged in a polarized manner between adjacent brain endothelial 
cells as shown if Figure 4. Junctional adhesion molecules are located 
on the luminal side while cadherins are on the abluminal side. Be-
tween the luminal and the abluminal are the tight junction proteins 
that creates a tight seal preventing free paracellular transport. Clau-
dins are the main tight junctional protein that define BBB matura-
tion [55-57]. Brain endothelial cells mainly express claudin 1, 3, 5 
and 12 [57-60]. These tetraspan transmembrane proteins assist in the 
construction of the BBB and hence the maintenance of barrier integ-
rity between adjacent endothelial cells [55]. Claudin 5 is regulated 
by β-catenin, however, it is inhibited by β-catenin when the transcrip-
tional factor FOXO-1 that is induced by VEGF signaling is active 
in brain endothelial cells [56,61]. This regulation in endothelial cells 
determines BBB maturation.

	 Even though occludin expression in brain endothelial cells has 
been shown to decrease barrier integrity in vitro [62,63], occludin 
deficient mice had normal barrier function and the tight junction mor-
phology was maintained [64].

	 The tight junctions (claudins and occludin) are anchored to the 
actin cytoskeleton by the Zonula occludens. Specifically, Zonula  

occluden-1 (ZO-1) is a membrane-associated granulate kinase like 
protein. ZO-1 stabilization of tight junctions is critical such that its 
deletion leads to increased permeability due to the disruption of the 
tight junction and redistribution of active myosin II [65].

	 Interestingly, barrier formation is evident between three adjoining 
endothelial cells as well. Specifically, tricellulin [66,67] and lipolysis 
stimulated lipoprotein receptor [68] are located at the point of connec-
tion between three cells. These are weak tri-cellular junctions; howev-
er, they stabilize the specialized junctions in epithelial cells. 

	 Vascular endothelial cadherin (VE-cadherin) in endothelial cells 
controls permeability and also prevents leukocyte extravasation 
into the brain parenchyma [69]. Furthermore, VE- cadherin and N- 
cadherin function as adhesion receptors and are involved in down-
stream signaling via complexes of proteins bound to their cytosolic 
tails. N-cadherin in particular, mediates cell-cell interaction between 
endothelial cells and pericytes [70]. Β-catenin is also expressed by 
endothelial cells and is implicated in barrier functions. Its function 
as a co-transcriptional factor are critical in protein expression of 
claudin-5 [71], but its concerted anchoring of VE-cadherin with its 
homologue plakoglobin/γ-catenin to actin microfilaments stabilizes 
the junctional proteins and thereby improves barrier properties [71]. 

	 Brain endothelial cells have relatively large quantities and vol-
umes of mitochondria compared to peripheral endothelial cells. This 
is because they contain enzymes and active transport systems that rely 
either directly on ATP consumption or on a secondary active transport 
systems that depend on the electrochemical gradient generated by ac-
tive transporters [72]. Facilitated and active transporters at the BBB 
include glucose transporter-1 (GLUT-1) [73-75], permeability glyco-
protein- (P-gp) also known as multidrug resistant protein 1 (Mdr-1), 
and breast cancer resistant protein (BCRP) that are critical in efflux 
of harmful hydrophilic and hydrophobic xenobiotics from the brain 
parenchyma [76-78]. In addition, however, they also serve to efflux 
many pharmaceutical compounds, limiting their therapeutic value.

	 Low transcellular transport at the BBB is governed by low num-
bers of caveolae and reduced transcellular transporters such as ma-
jor facilitator superfamily domain-containing protein -2 (MFSD2 or 
MFSD2A) [79,80]. Specifically, MFSD2A is an DHA omega3 fatty 
acid transporter in endothelial cells where it regulates vesicular traffic 
in CNS BBB/blood retinal barrier (BRB) [81,82]. Systemic ablation 
of MFSD2A increased BBB permeability due to uncontrolled vesic-
ular trafficking in endothelial cells [83]. Caveolin-1 regulates sig-
nal transduction, endocytosis, transcytosis and molecular transport. 

Figure 2: Transport pathways at the Blood Brain Barrier. Figure 4: Junctional polarization and arrangement in adjacent endothelial cells.

Figure 3: Brain endothelial cell interaction with parenchymal cells. 
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It also controls angiogenic response through mediating VEGF re-
ceptor 2 (VEGFR2) phosphorylation and internalization [49,70,84]. 
Caveolin-1; however, contributes to junctional opening by weaken-
ing VE-cadherin based adherens junction by interacting with β-cat-
enin[85]. Under inflammatory conditions, the pro inflammatory 
chemokine CCL2 induces BBB disruption through CAV-1 mediated 
internalization of occludin and claudin-5 [86].

	 Enzymes that make chemical modifications to molecules that may 
cross the BBB and affect neuronal function are also prevalent in brain 
endothelial cells. These chemical modifications reduce toxicity of 
molecules by either metabolism that renders the molecules inactive 
or by addition of moieties that directs the toxins towards excretory 
pathways [87,88]. Specifically, brain endothelial cells have high con-
centrations of γ-glutamyl transpeptidase, alkaline phosphatase and 
aromatic acid decarboxylases [89]. Together with active transporters, 
these metabolic barriers regulates the concentrations of ions, metabo-
lites and foreign substances within the NVU [74,90]. 

Pericytes

	 Pericytes wrap around the small vessels thereby providing both 
structural and vasodynamic support to the microvasculature. Peri-
cytes are involved in cerebral autoregulation through their expression 
of receptors that are critical for transmitters such as catecholamines 
[91], angiotensin II [92], vasoactive intestinal peptides [93], endo-
thelin-1 [94], and vasopressin [95]. Ramsauer and colleagues have 
shown that pericytes stabilize the capillary like structures that are 
formed by endothelial cells during angiogenesis and differentiation of 
the BBB [96]. Furthermore, the use of viable pericyte deficient mouse 
mutants have shown that pericyte deficiency increases BBB permea-
bility to water and to a range of low to high molecular weight tracers 
[46]. This increased permeability has been shown to occur through 
endothelial transcytosis indicating that pericyte regulation of the tran-
scellular barrier is critical to the normal function of the BBB [97]. 
Other conditional knockout mouse models have also shown that loss 
of pericytic laminin causes BBB breakdown and hydrocephalus [98]. 
This can be attributed to the destabilization of the basement mem-
brane that normally promotes BBB integrity by providing structural 
support for the endothelial cells, pericytes and astrocytes. Diminished 
expression of critical transporters such as aquaporin 4 (AQP4) in con-
ditional knockouts is also linked to hydrocephalus [98]. BBB-specific 
gene expression patterns in endothelial cells and induction of polar-
ization in astrocyte foot processes are also regulated by pericytes [46]. 

Basement membrane

	 The NVU basement membrane contributes to the integrity of the 
BBB by providing structural support for both endothelial cells and 
pericytes. The cerebrovascular basement membrane mainly con-
sists of extracellular matrix proteins; collagen IV, laminin, perlecan, 
nidogen and fibronectin that are released by endothelial cells, peri-
cytes and astrocytes [99-101]. Notably, the neurovascular unit con-
sists of two types of the basement membrane, (BL1 Figure 3) the 
endothelial basement membrane formed by endothelial cells and peri-
cytes and (BL2 Figure 3) the parenchymal basement membrane that 
consist of extra cellular matrix proteins secreted by astrocytes [102-
105]. The protein composition in these perivascular spaces are dis-
tinctly different; the endothelial basement membrane consists of lami-
nin α4 and α5 [106] while the parenchymal membrane is composed 
of laminin α1 and α2 [102,103]. This particular protein composition  

contributes to specific signaling within the NVU that is necessary for 
normal function of the BBB. Hence, the basement membrane serves 
not only as a physical barrier but also regulates signaling pathways 
in endothelial cells and pericytes thereby influencing BBB integrity 
[102,107,108]. 

	 Many current three-dimensional models consist of artificial poly-
carbonate, polytetrafluorethylene, and polydimethyl-siloxane mem-
branes serving as basal lamina [5,30,109], which is not reflective of 
the human brain ECM. Even though the use of collagen (usually type 
I) to provide a 3D microenvironment for glial cells and neurons [5] al-
lows for the fabrication of multi cellular in-vitro models, it is import-
ant to note that no collagen I and very low amounts of collagen type 4 
are found in the adult human brain. The ECM in the adult brain tissue 
consists of lecticans, a family of proteoglycans that contain lectin and 
hyaluronic acid domains [110]. Incorporation of such ECM may pro-
mote BBB maturation that recapitulates normal human physiology. 

Astrocytes

	 Astrocytes are the most abundant cell type in the vertebrate CNS. 
They have specialized end feet covering the surface of the CNS mi-
crovessels [49], providing a close association to the microvessels. 
Astrocytes express crucial proteins such as aquaporin-4 (AQP-4) and 
Kir4 potassium channels at the foot processes that function to regulate 
water homeostasis in the NVU [111]. In vitro experiments demon-
strated that astrocytes improved BBB integrity in co-culture models 
with brain endothelial cells and administrating astrocyte conditioned 
media to the brain endothelial cells also improved BBB integrity sig-
nifying that astrocytes secrete soluble factors that enhance BBB in-
tegrity [112-115]. Specifically, astrocytes improve and maintain BBB 
integrity through the secretion of factors Wnts and norrin [116], and 
also release sonic hedgehog, retinoic acid, and angiopotin-1, which 
are key factors that support barrier properties in brain endothelial 
cells [117-119]. The crosstalk between endothelial cells and the as-
trocytes is not only critical for improving and maintaining the BBB 
integrity but it is also vital for cellular differentiation that promotes 
BBB maturation. Specifically, endothelial cells secrete leukemia in-
hibitory factor-1 that supports astrocyte differentiation that in turn in-
duces the expression of Src suppressed C-Kinase substrate, leading to 
astrocytic secretion of angiopotin-1, which stabilizes vessels through 
Tie2/TEK binding on endothelial cells [111]. 

Microglia

	 As a distinct class of the glial cells, microglia serve as the pri-
mary brain immune effector cells that become activated and undergo 
morphological and functional transformation during various brain in-
juries and diseases [90,120]. They are ontogenetically related to the 
mononuclear phagocyte lineage and are activated by lesions, neuro-
degenerative diseases, stroke, and brain neoplasm [90,121-124]. Mi-
croglial response at a site of injury are complex, however, structural 
changes such as motile branches and migration of stomata have been 
observed during microglial response to insults [125,126]. In their rest-
ing phase, microglia have long, thin ramified processes [120]. During 
this phase, microglia are in a vigilant form because they can promptly 
sense slight homeostatic disturbance in the CNS. The changes from 
the resting phase to the activated form is antigen specific and orches-
trated by specific cytokine activation [75,127-129]. 

	 Microglial involvement in brain injuries has been investigated but 
there are very few studies that have been conducted to delineate a  

http://doi.org/10.24966/AND-9608/100021


Citation: Nzou G, Seeds MC, Wicks RT, Atala AJ (2019) Fundamental Neurovascular Components for the Development of Complex and Dynamic in Vitro 
Brain Equivalent Models. J Alzheimers Neurodegener Dis 5: 021.

• Page 5 of 14 •

J Alzheimers Neurodegener Dis ISSN: 2572-9608, Open Access Journal
DOI: 10.24966/AND-9608/100021

Volume 5 • Issue 1 • 100021

direct link between microglia and BBB maintenance. Glial involve-
ment in BBB maintenance has mostly been attributed to astrocytes 
because their end feet processes touch the microvessels. Findings on 
microglial location in the perivascular space highlight their interac-
tion with endothelial cells and supports their influence on BBB integ-
rity. During their resting phase, microglial cells effectively control the 
neurovascular unit microenvironment. Nimmerjahn and colleagues, 
have shown that microglia clear the parenchyma of accumulated low 
diffusible metabolic products and tissue component debris [120]. 
They observed bulbous branch endings and spontaneous engulfment 
of tissue components. Further histologic staining highlighted microg-
lial processes and protrusions in contact with neuronal cell bodies 
and blood vessels [120]. This indicates that under healthy conditions, 
microglia interact with other cortical elements and regulate the NVU 
microenvironment by clearing debris and cellular components. How-
ever, it should be noted that upon activation, microglia release cyto-
kines such as TNF-α and IL-6 that have been associated with BBB 
dysfunction [130,131]. Further discussion on microglia involvement 
in disease states will be included below in specific disease sections of 
this report. However, more studies are needed to elucidate the direct 
interaction between microglia and cells of the BBB in order to fully 
understand the involvement of microglia in BBB maintenance. Cur-
rent in vitro neurovascular unit models do not consist of microglia, in 
contrast to our current model. 

Oligodendrocytes

	 Oligodendrocytes, like Schwann cells in the peripheral nervous 
system, are glial cells responsible for the formation of myelin sheets 
that provide support and insulation to axons in the central nervous 
system [90]. Oligodendrocytes produce a myelin sheet membrane 
consisting of lipids and specialized proteins that wraps around the 
axons in the CNS [90] and provides vital support for proper electri-
cal signal transmission. Since a single oligodendrocyte can extend its 
processes to about 50 axons [132], the effects of oligodendrocyte dys-
function can be deleterious. More importantly, oligodendrocytes are 
known to secret TGF-β, a factor that promotes BBB integrity through 
the activation of the MEK/ERK pathway, which consequently upreg-
ulates expression of tight junction proteins for BBB maturation and 
maintenance [36]. Rhodes and colleagues have shown that lesions or 
injuries that results in oligodendrocytes dysfunction disrupts the BBB 
[133]. No definitive studies have been conducted to determine wheth-
er oligodendrocyte dysfunction causes BBB breakdown or whether 
it is the breakdown of the BBB that results in oligodendrocyte dys-
function that consequently leads to neuronal dysfunction. Rhodes and 
colleagues showed that BBB breakdown using VEGF or lipopoly-
saccharide in rats and mice caused hypertrophy in oligodendrocytes 
precursor cells. Direct injection of blood components such as serum, 
thrombin did not have an effect. However, platelets, macrophages, 
TGF-β, TNF-α and IL-1 caused hypertrophy and increased NG2 in 
oligodendrocyte precursor cells [133]. Further studies that incorpo-
rate diseased oligodendrocyte or other parenchymal cells in animal 
or in vitro models may help delineate the effect of dysfunctional oli-
godendrocytes on the BBB integrity. Most existing in vitro models 
do not include oligodendrocytes and hence their contribution to BBB 
maturation is not appropriately modeled. We incorporated oligoden-
drocyte precursor cells in our model to more closely mimic normal 
human physiology of the neurovascular unit. 

Neurons

	 The concerted interaction between neurons, glial cells and endo-
thelial cells termed neurovascular coupling, determines BBB forma-
tion and function in vertebrates. As depicted in (Figure 1), astrocyte 
processes enwrap synaptic terminals, which allows them to transmit 
signals from neurons to the microvessels [41,134]. However, the 
mechanisms of neuronal involvement in BBB maturation and main-
tenance is not well understood. Co-culture of rat brain endothelial 
cells with differentiated neuro progenitor cells (NPCs) revealed some 
clues that neurons influence BBB integrity [135]. Neuro-endothelial 
cell co-culture studies have shown that neurons increase trans-endo-
thelial electrical resistance and decreases permeability in endothelial 
cells [135,136]. Additionally, Lippmann’s results from co-cultures of 
endothelial cells with NPCs showed upregulation of 10 endothelial 
cell genes [135]. Some of the genes that were upregulated includ-
ed genes that induce angiogenesis, and CPE, a gene that encodes for 
carboxypeptidase E, an enzyme that regulates brain derived neuro-
trophic factor processing [135]. The upregulation of the CPE gene 
in endothelial cells indicates an increase of the peptide reflecting the 
cross talk between neurons and endothelial cells. They also showed 
that neurons increased MDR1A expression, a gene that encodes for 
a critical efflux transporter at the BBB [135]. Those studies indicate 
that increasing the complexity of co-culture models to include multi-
ple neural cells instead of just primary BBB cells increased not only 
BBB integrity, but may also help create platforms that can be utilized 
in many applications beyond BBB studies. 

BBB Dysfunction in Neurodegenerative Diseases
	 Mechanistic causes for most neurological disorders are not 
known, however, blood-brain barrier dysfunction and inflammation 
play major roles in neurodegenerative disease pathologies [75,137-
143]. To highlight major points BBB malfunction associated in neuro-
logical disorders, the mechanism of BBB breakdown in Alzheimer’s 
disease, Parkinson’s disease and multiple sclerosis will be presented. 
It should be noted, however, that BBB malfunction in Amyotrophic 
Lateral Sclerosis (ALS) [144-146], Huntington’s disease [147-149], 
HIV associated dementia [150-153] and other neurological diseases 
not described here also contribute to those disease pathologies.

Alzheimer’s disease

	 Alzheimer’s disease (AD) is progressive degenerative brain disor-
der that is characterized by the accumulation of plaques in the brain, 
irreversible cognitive impairment, decline in thinking and memory 
and thus a decline in behavioral and social skills. Characterized by an 
accumulation of protein plaques and tangles in the brain, it is the most 
common cause of adult dementia. Schneck and colleagues compiled 
the current concepts in AD [154], so this discussion will be limited to 
BBB dysfunction in AD.

	 Over 20 independent postmortem studies have confirmed BBB 
breakdown in AD [155]. Hallmarks of BBB dysfunction include, 
pericytes and endothelial cell degeneration, loss of tight junctions, 
red blood cell and monocyte extravasation, brain capillary leakages of 
blood borne components such as albumin, immunoglobulin (IgG), fi-
brinogen, and thrombin [139]. There are many mechanisms that con-
tribute to BBB breakdown in AD. Some of these processes include 
early cerebrovascular disorder [156], vascular dysregulation [157], 
and ischemic damage [158]. 
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	 Though many causes of AD have not been linked to specific ge-
netic causes, transgenic animal models are prevalently used to study 
Alzheimer’s disease [122,159-162]. Mice with mutations in the APP 
gene, which produces the amyloid precursor protein that is in turn 
processed into fragments including amyloid beta (Aβ) peptide, have 
been shown to have capillary leakages of blood derived fibrinogen, 
IgG and albumin, and leakage of experimentally injected Evans blue 
dyes. Electron microscopy of these mouse brains also indicated de-
generation and loss of pericytes, endothelium, and vascular smooth 
muscles cells [163-167]. Time course studies evaluating BBB break-
down, with respect to other pathologies, indicated that BBB break-
down develops early in APP transgenic mice [52,166-168]. Deane 
and colleagues observed aberrant expression of low-density lipopro-
tein transporter protein1 (LRP1) in APP transgenic mice [169]. This 
transporter is a major efflux protein for Aβ toxin at the BBB. Other 
studies with an APP model showed an increase in expression of an 
influx transporter, the receptor for advanced glycation end products 
(RAGE) [170]. Normal function of transporters such as LRP1 and 
RAGE at the BBB is crucial for maintaining brain homeostasis.

	 Cerebrovascular autoregulation is impaired in APP murine models 
[171]. For example, studies have shown reduced brain glucose up-
take due to glucose transporter dysfunction in APP transgenic mod-
els[171,172]. BBB breakdown and inhibition of LRP1 transcription 
due to diminished GLUT1 expression in brain endothelial cells is 
thought to accelerate Aβ pathology [172]. Alterations in protein ex-
pression of all these crucial transporters at the BBB can result in a 
malfunctioning BBB that can lead to deleterious secondary conse-
quences. 

	 BBB breakdown has been shown in many other transgenic murine 
models representing known or suspected genetic associations from 
human studies. For examples, loss of BBB integrity [173] and loss of 
vascular phenotype [164] in mice expressing PSEN1 mutation, BBB 
breakdown in Tau transgenic mice [174], Pericyte degeneration and 
BBB dysfunction in PDGFRβ- deficient transgenic mice [26], and ac-
cumulation of perivascular IgG, fibrinogen, thrombin, hemosiderin 
deposits and leakage of Evans blue in APOE transgenic mice [175]. 
Even though no effective treatment has been developed from any of 
these animal models, it is worth noting that the models have increased 
our understanding of molecular pathways in brain cellular functions 
and may possibly help to identify biomarkers for early Alzheimer’s 
disease diagnosis.

	 Importantly, neuroimaging in patients with mild cognitive impair-
ment revealed that BBB breakdown precedes brain atrophy or demen-
tia [168,176-178]. Further studies and new models are still needed to 
determine cellular and molecular mechanism by which the BBB is 
impaired and to accelerate the development of therapeutic targets for 
Alzheimer’s disease that aim to maintain and repair BBB integrity.

Parkinison’s disease

	 Parkinson’s disease (PD) is a progressive neurodegenerative dis-
order that is characterized by neuronal death in the substantia nigra 
basal ganglia, degeneration of dopaminergic neurotransmission, and 
the presence of Lewy body (α-synuclein) protein deposits [179-181]. 
PD symptoms include asymmetrical bradykinesia, rigidity, resting 
tremor and postural instability [182,183]. Cellular events such as 
failure in the protein degradation machinery, oxidative stress, mito-
chondrial dysfunction, defects in mitophagy and the accumulation  

of α-synuclein are believed to drive PD initiation and progression 
[180,184,185]. Vascular damage from α-synuclein deposition increas-
es BBB permeability which suggests the role of the protein in BBB 
disruption and PD development [180,186,187]. These and other cel-
lular dysfunctions lead to glial or neuronal cell death. 

	 While some studies in animal models assume that BBB integ-
rity remains unchanged during the development of PD pathology 
[188,189], clinical evidence shows increased BBB permeability in 
PD patients [190-193]. PD patients have been shown to have reduced 
P-glycoprotein (P-gp) function [191,194]. Studies in P-gp knock-out 
mice have shown an increased parenchymal accumulation of admin-
istered neurotoxins, ivermectin and the carcinostatic vinblanstine. 
Hence normal P-gp function at the BBB appears compromised in PD 
[195]. Furthermore, diminished P-gp activity in aged people is asso-
ciated with reduced removal of toxins from the brain and linked to PD 
pathology [196]. Since PD is a chronic neurodegenerative disorder 
that affects one in every 100 people at the age of 60 and above, it 
is worth pointing out that many age related processes, such as in-
creased production of ROS and proinflammatory cytokines in brain 
endothelial cells, contribute heavily towards BBB dysfunction [196-
198]. Since neurons and other parenchymal cells are mainly affected 
in PD and other age-related dementias, it is critical that in vitro mod-
els designed to understand molecular involvement of the BBB in PD 
contain these cell types. 

Multiple sclerosis

	 Multiple sclerosis (MS) is a chronic autoimmune, inflammatory 
neurological disease that is characterized by demyelinating plaques in 
the central nervous system (CNS) [199-201]. MS symptoms include 
visual disturbances, numbness, prickling, muscle weakness, loss of 
coordination and balance, thinking and memory deficits [202]. The 
disease starts to manifest between the ages of 20 and 40. The cause of 
MS is unknown and there is no cure for the disease. The only existing 
therapies are based on blocking transmigration of T cells across the 
BBB [203]. Leukocyte entry into the CNS is one of the hallmarks 
of MS. Activated leukocytes, specifically autoaggressive CD4+ T 
lymphocytes, are believed to accumulate in the brain by traversing 
the BBB and the cerebral spinal fluid (CSF) barrier through steps in-
cluding, rolling, activation, adhesion and transmigration [204-208]. 
Chemokines activate integrins on leukocytes to enhance adhesion. 
This binding subsequently leads to cytoskeletal reorganization of 
G-protein-coupled receptors, which allows the transmigration of leu-
kocytes [205,209]. 

	 The transmigration of leukocytes highlights the importance of 
maintaining BBB integrity in MS. Neuroimaging studies and post-
mortem findings in MS patients show that BBB disruption is an early 
feature in MS [83] and animal studies have shown that BBB break-
down precedes leukocyte infiltration [47,83]. Spencer and colleagues 
speculated that environmental and genetic associations may influence 
the BBB, which results in the vessel pathology of the disease [201]. 
In order to elucidate the mechanistic involvement of the BBB in MS 
pathology, new in vitro models that contain vascular cells and neu-
ro-glial components such as oligodendrocytes and neurons are critical 
to model a functional BBB. Such models can be applied to assess 
transmigration of leukocytes. Models containing a functional BBB 
can be used to identify disease initiating microenvironmental factors, 
such as changes in cytokine levels, that activate circulating leuko-
cytes and initiate adhesion. Further, such models could be utilized 
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to investigate pathological connections between BBB integrity and 
demyelination that occurs in MS. Current in vitro models of the NVU 
do not contain oligodendrocytes or neuronal cells types, which makes 
it difficult to study MS disease conditions comprehensively in vitro.

NVU Containing a Functional BBB

	 Most current NVU models are not integrated with both glia and 
neuronal components and are limited in addressing scientific enqui-
ries concerning the link between BBB dysfunction in neurological 
disorders and the parenchymal tissue components, or the effects of 
drug candidates after they cross the BBB. Our lab developed a six 
cell type brain neurovascular unit organoid model that produces 
a functional BBB[210]. The organoid model contains human brain 
microvascular endothelial cells (HE), human pericytes (HP), human 
astrocytes (HA), human microglia (HM), human oligodendrocytes 
(HO) and human neurons (HN), with surrounding endothelial cells 
enclosing the brain parenchymal cells. We reported cell viability for 
up to 21 days in vitro that could be critical in assessing the long-term 
effect in drug toxicity studies. We also reported the expression of the 
efflux protein, P-gp that exported xenobiotics from the brain tissue. 
Importantly, our data show that Hg2+, from HgCl2 dissolved in the 
media, only causes significant cell death in neuronal organoids that 
did not have a BBB (no endothelial cells or pericytes) compared to 
organoids that possess an intact BBB. This indicated charge selectiv-
ity in the organoid model containing all 6 cell types. This finding was 
further validated using a small molecule pro-drug MPTP (a lipophilic 
small molecule), which is toxic when enzymatically converted into its 
positively charged metabolite MPP+ in glial cells. MPTP caused low 
ATP production and cell death in organoids that contained all six cell 
types and an intact BBB. In contrast, charged MPP+ did not cause cell 
death to organoids containing 6 cell types, but significantly decreased 
ATP production to organoids without an intact BBB [210]. These tox-
icity studies reflect the normal function of the BBB that is critical in 
maintaining brain homeostasis. 

	 We have highlighted above that BBB breakdown precedes brain 
atrophy and leucocyte infiltration in Alzheimer’s and MS respec-
tively. Upon investigating BBB integrity, our data from this organ-
oid model show transmigration of 70 kDa dextran and IgG when the 
BBB is transiently disrupted using histamine or hypoxia. Further 
studies are needed to assess the link between BBB leakage and neu-
rological disorders. Current APOE transgenic mice models also show 
accumulation of perivascular IgG, fibrinogen, thrombin, hemosider-
in deposits and leakage of Evans blue into the brain parenchyma. A 
model containing functional BBB and neuro-glia components may 
help elucidate the link between BBB disruption and Alzheimer’s dis-
ease and related dementias. Our data also show the disruption of tight 
junctions when the organoids are cultured under hypoxic conditions. 
This indicates the utility of the model in understanding the underlying 
physiological conditions that alter normal NVU microenvironment 
that could possibly cause BBB breakdown in neurological disorders. 
Further evaluation of this model is required to ascertain its utility in 
neurodegenerative disease modeling.

	 In this review we have described the importance of the integrated 
function of the cell types that make up the BBB with parenchymal 
cells such as glia and neurons. We have discussed the limitation of 
2D models that do not recapitulate the basic functions of the BBB. 
2D cell cultures are limited in disease modeling applications because 
they do not allow for the incorporation of more than 3 cell types 

without losing the proper 3D microenvironment required to recapitu-
late normal physiological function of each of the cell types. We also 
highlighted the fact that most current models incorporate three major 
cell types that form the BBB or use rodent cells to imply human BBB 
physiology and functionality. We propose that the use of these models 
in preclinical studies may not fully represent normal NVU physiology 
activity. Specifically, receptor and enzyme systems that regulate the 
influx and efflux of substances at the BBB level are different between 
species and hence extrapolation of BBB functionality from rodents 
needs to be done with caution and/or with a fair understanding of 
these differences. For example, studies have shown that some radio 
ligands that are substrates for P-gp in rodents are efficiently export-
ed in rodents [211]. Similar studies, however, have shown that these 
radio ligands are taken up and retained by the brain in humans and 
non-human primates [212-214]. Furthermore, we have also stated 
that the utilization of synthetic membranes to establish the basement 
membrane is limiting for they impede important intercellular inter-
actions that are critical for the normal function of the neurovascular 
unit to maintain BBB integrity. However, new models consisting of 
electro spun membranes derived from human ECM may enhance the 
development of physiologically relevant NVU model. 

Future Perspectives
	 There is a great need for complex in vitro models that can be uti-
lized in pre-clinical studies including drug discovery, toxicity screen-
ing, and biomarker identification studies. Since the model we have 
developed has only been evaluated for BBB permeability and the ef-
fect of hypoxia on BBB function, it should be noted that further work 
is required to ascertain the utility of the model in pre-clinical studies. 
To do this, one will have to establish the transport pathways present 
at the BBB in our organoid system. Such understanding would pave 
the way for developing strategies by which drug candidates could be 
structurally and chemically optimized to enhance permeability across 
the BBB without compromising BBB integrity.

	 Treatment schemes that are best suited for an individual based 
on pharmacogenetic and pharmacogenomic information have been 
reported for cancer [215-218]. This theme of personalized medicine 
could prove to be very effective in genetically influenced neurological 
diseases [219-221]. To pave the way for extensive studies, in vitro 
models containing patient derived cells could be utilized not only to 
identify therapeutic targets that are specific to the individual or group 
of individuals that express specific genotypes but would also aid the 
understanding of molecular and biochemical basis of drug efficacy. 
Future studies incorporating patient derived cells into an organoid 
system containing the major components of the NVU could elucidate 
mechanistic connections between BBB dysfunction and disease pro-
gression. Patient derived cells of all cell types composing the NVU 
are not readily available. In addition, efficient methods of deriving all 
six cell types composing the NVU through the use of induced plurip-
otent stem cell (iPSC) technology have not been developed to date. 
To overcome this limitation, gene editing tools could be employed to 
create mutations in specific cell types prior to incorporating them into 
an organoid. The organoid could then be evaluated for that disease 
phenotype. 

Summary
	 Complex models containing all the cellular components of the 
NVU may aid, drug discovery, neurotoxicity screening, biomarker  
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identification and the development of new therapies for neurological 
disorders. More importantly, human cell-derived complex models 
containing functional BBB, glia and neurons will help select drug 
candidates that can not only cross the BBB but will also help under-
stand the effects of the molecules after they cross the BBB. This is 
important not only for drug candidates against neurological disorders 
but even for evaluating toxicity effects of brain penetrating drugs and 
metabolites that are administered systematically.
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